A high-quality genome of taro (Colocasia esculenta (L.) Schott), one of the world's oldest crops.

来自 PUBMED

作者:

Yin JJiang LWang LHan XGuo WLi CZhou YDenton MZhang P

展开

摘要:

Taro (Colocasia esculenta (L.), Schott), from the Araceae family, is one of the oldest crops with important edible, medicinal, nutritional and economic value. Taro is a highly polymorphic species including diverse genotypes adapted to a broad range of environments, but the taro genome has rarely been investigated. Here, a high-quality chromosome-level genome of C. esculenta was assembled using data sequenced by Illumina, PacBio and Nanopore platforms. The assembled genome size was 2,405 Mb with a contig N50 of 400.0 kb and a scaffold N50 of 159.4 Mb. In total, 2,311 Mb (96.09%) of the contig sequences was anchored onto 14 chromosomes to form pseudomolecules, and 2,126 Mb (88.43%) was annotated as repetitive sequences. Of the 28,695 predicted protein-coding genes, 26,215 genes (91.4%) could be functionally annotated. On the basis of phylogenetic analysis using 769 genes, C. esculenta and Spirodela polyrhiza were placed on one branch of the tree that diverged approximately 73.23 million years ago. The synteny analyses showed that there have been two whole-genome duplication events in C. esculenta separated by a relatively short gap. According to comparative genome analysis, a larger number (1,189) of distinct gene families and long terminal repeats were enriched in C. esculenta. Our high-quality taro genome will provide valuable resources for further genetic, ecological and evolutionary analyses of taro or other species in the Araceae.

收起

展开

DOI:

10.1111/1755-0998.13239

被引量:

17

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(377)

参考文献(0)

引证文献(17)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读