Viral Load Kinetics of SARS-CoV-2 Infection in Saliva in Korean Patients: a Prospective Multi-center Comparative Study.

来自 PUBMED

作者:

Kim SELee JYLee AKim SPark KHJung SIKang SJOh THKim UJLee SYKee SJJang HC

展开

摘要:

This study was performed to compare the viral load and kinetics of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in saliva with those in standard nasopharyngeal/oropharyngeal (NP/OP) swabs. Fifteen patients with SARS-CoV-2 infection from four hospitals were prospectively enrolled and matched samples of nasopharyngeal/oropharyngeal swabs and saliva were collected at Day 1 of admission and every other day till consequently negative for two times. Real-time reverse transcription polymerase chain reaction (rRT-PCR) was performed to detect the envelope (E) and RNA-dependent RNA polymerase (RdRP) genes. The cycle threshold values of saliva were comparable to those of NP/OP swabs overall (P = 0.720, Mann-Whitney U test). However, the overall sensitivity of rRT-PCR using saliva was 64% (34/53), which is lower than the 77% (41/53) using NP/OP swabs. The sensitivity of rRT-PCR using saliva was especially lower in early stage of symptom onset (1-5 days; 8/15; 53%) and in patients who did not have sputum (12/22; 55%). Saliva sample itself is not appropriate for initial diagnosis of coronavirus disease 2019 (COVID-19) to replace NP/OP swabs, especially for the person who does not produce sputum. COVID-19 cannot be excluded when the test using saliva is negative, and it is necessary to retest using NP/OP swabs.

收起

展开

DOI:

10.3346/jkms.2020.35.e287

被引量:

23

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(548)

参考文献(16)

引证文献(23)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读