Heme oxygenase-1 gene modified human placental mesenchymal stem cells promote placental angiogenesis and spiral artery remodeling by improving the balance of angiogenic factors in vitro.

来自 PUBMED

作者:

Wu DLiu YLiu XLiu WShi HZhang YZou LZhao Y

展开

摘要:

Abnormal placental vascular development is a possible cause of preeclampsia. Mesenchymal stem cell (MSC)-based therapy is a promising approach for tissue repair and angiogenesis. Further, heme oxygenase-1 (HO-1) has beneficial effects on the angiogenic balance during pregnancy. We explored the effects of HO-1 overexpression on placental vascularization using human placenta-derived MSCs (hPMSCs). hPMSCs were isolated from term placenta, and the HO-1 gene was transfected with a lentivirus. Proliferation, migration, and apoptosis of hPMSCs and HO-hPMSCs were examined using CCK8 assay, trans-well assay, and flow cytometry, respectively. Paracrine secretion of the angiogenesis factors VEGF and PlGF, as well as the anti-angiogenesis factors sFlt-1 and sEng, from hPMSC/HO-hPMSCs was measured by qRT-PCR and ELISA. Human umbilical cord endothelial cells and a villus-decidua co-culture were treated with conditioned media to study the effect of HO-1-hPMSCs on tube formation and villus vascular remodeling. HO-1 significantly improved the proliferation and migration of hPMSCs. Additionally, HO-1 reduced hPMSCs apoptosis. The levels of VEGF were increased in HO-1-hPMSCs, whereas those of sFlt-1 decreased. Tube formation assays showed that the conditioned media from HO-1-hPMSCs resulted in more branching points than those from the controls. The villus-decidua co-culture system confirmed that HO-1-hPMSCs are conducive to angiogenesis and vascular remodeling. HO-1-modified hPMSCs improve placental vascularization by promoting a balance of pro- and anti- angiogenesis factors, which is worthy of further study as an alternative treatment for preeclampsia.

收起

展开

DOI:

10.1016/j.placenta.2020.07.007

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(226)

参考文献(0)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读