Potential mechanisms of tremor tolerance induced in rats by the repeated administration of total alkaloid extracts from the seeds of Peganum harmala Linn.
The seeds of Peganum harmala Linn have been widely used for the treatment of nervous, cardiovascular, gastrointestinal, respiratory, and endocrine diseases and many other human ailments. However, tremor toxicity occurs after overdose and is tolerated following multiple dosing. Thus far, little is known about the underlying mechanisms of tremors and tremor tolerance.
To investigate the potential mechanisms of tremors and tremor tolerance induced in rats by the repeated administration of total alkaloid extracts from the seeds of P. harmala (TAEP).
A tremor model was induced in male Wistar rats by administering TAEP at a dose of 150 mg/kg/day. To evaluate tremor action, behavioral assessment was conducted by using a custom-built tremor acquisition and analysis system. To investigate the relationships between tremors and neurotransmitter levels in the brain, various neurotransmitters were simultaneously quantified by an ultra-performance liquid chromatography combined with electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) system, and the association between these two parameters was analyzed using Pearson correlation coefficients. To further elucidate the potential mechanisms of the alterations of neurotransmitter levels in cortical tissues, the protein expression levels of several important enzymes and transporters that are closely related to neurotransmitter levels were investigated. In addition, neuropathological analysis was conducted to assess the effect of TAEP on neurons in the brain. To further clarify the potential mechanisms of TAEP-induced neurodegeneration in the brain, c-fos was subjected to immunohistochemical analysis, and oxidative stress markers were examined.
Tremors initially occurred in rats after the oral administration of TAEP at a dose of 150 mg/kg/day. However, they were tolerated following repeated dosing. The levels of 5-hydroxytryptamine (5-HT) and glycine (Gly) in cortical tissues were most likely associated with the tremor response. Tremor tolerance also likely resulted from the degeneration of cerebellar Purkinje cells. Furthermore, the alteration of 5-HT levels was mainly attributed to the downregulated expression of monoamine oxidase A (MAO-A). The degeneration of Purkinje neurons might have resulted from the overexpression of c-fos and increased oxidative stress in the cerebellum after the multiple dosing of TAEP.
The tremor response induced by TAEP at high doses is closely related to the concentrations of 5-HT and Gly in cortical tissues. Tremor tolerance may also be attributed to the degeneration of cerebellar Purkinje cells after the repeated dosing of TAEP. Further studies should be conducted to elucidate the interaction of the alkaloids on the neurotransmitter receptors, the expression of related neurotransmitter receptors, the specific signaling pathway involved in regulating MAO-A, and the mechanism of the loss and functional recovery of cerebellar Purkinje neurons.
Wang Y
,Wang H
,Zhang L
,Zhang Y
,Deng G
,Li S
,Cao N
,Guan H
,Cheng X
,Wang C
... -
《-》
Subchronic toxicity and concomitant toxicokinetics of long-term oral administration of total alkaloid extracts from seeds of Peganum harmala Linn: A 28-day study in rats.
The seeds of Peganum harmala Linn, in which the most abundant active compounds are harmaline and harmine, have been widely used as a traditional medicine in various countries to treat a broad spectrum of diseases including asthma, cough, depression, Parkinson's and Alzheimer's diseases. However, few studies on long-term or subchronic toxicity of seeds of P. harmala were reported after overdose.
To investigate the subchronic toxicity and concomitant toxicokinetics of total alkaloid extracts from seeds of P. harmala (TAEP) after oral administration for four weeks in rats.
The subchronic toxicity and concomitant toxicokinetics of TAEP were evaluated after 28-day oral administration in rats at daily dose levels of 15, 45, and 150 mg/kg. The signs of toxicity and mortality were monitored and recorded daily. The body weight and average food consumption were measured weekly. The analyses of hematology, biochemistry, urine, relative organ weights and histopathology were conducted at the termination of treatment and recovery phase. For concomitant toxicokinetics study, the plasma toxicokinetic parameters, tissue distribution, and excretion of predominant ingredients harmaline and harmine in TAEP and metabolites harmalol and harmol were tested.
Following initial repeated exposure to high-dose (150 mg/kg/day) of TAEP excitotoxic reaction, such as tremor, was observed, but tolerated on the fourth day after multiple dosing. The significant alterations in blood glucose and lipid metabolism in liver were observed, but recovered after four weeks of drug withdrawal. The no-observed-adverse-effect level (NOAEL) of TAEP was considered to be 45 mg/kg/day under the present study conditions. There were no significant gender differences in most indexes of subchronic toxicity throughout the experimental period with the exception of food consumption and body weight. In concomitant toxicokinetics study, the alterations of dynamic characteristic for harmaline, harmine and metabolite harmol after multiple oral administration at three doses had been observed. Harmaline, harmine and metabolites harmalol and harmol were widely distributed in organs and there was no accumulation in the tissues examined. The reduction of harmaline and metabolite harmalol in brain after multiple dosing at dose of 150 mg/kg might be closely related to the tremor tolerance. The main excretory pathway for metabolites harmalol and harmol was urinary excretion via kidney.
The results revealed that TAEP at doses of 15 and 45 mg/kg/day in rats might be safe. Excitotoxic reaction such as tremor occurred initially at dose of 150 mg/kg/day, however, the toxicity was tolerant and reversible. In addition, harmaline and harmine in TAEP had a quick absorption into blood and metabolized to harmalol and harmol, and there was no drug accumulation in the detected tissues. Further studies should be investigated to clarify the mechanisms of tremor tolerance and neurotoxicity of TAEP.
Wang Y
,Wang H
,Zhang L
,Zhang Y
,Sheng Y
,Deng G
,Li S
,Cao N
,Guan H
,Cheng X
,Wang C
... -
《-》
In vivo and in vitro metabolism and pharmacokinetics of cholinesterase inhibitor deoxyvasicine from aerial parts of Peganum harmala Linn in rats via UPLC-ESI-QTOF-MS and UPLC-ESI-MS/MS.
Aerial parts of Peganum harmala Linn are a Uighur traditional medicinal herb in China used to treat amnesia, bronchial asthma, and cough. Deoxyvasicine (DVAS), a potent cholinesterase inhibitor exhibiting anti-senile dementia activity, is one of the chief active ingredients in aerial parts of P. harmala and plays a key role in mediating the pharmacological effects of P. harmala. However, the metabolic profiling and in vivo pharmacokinetic characteristics of DVAS still remain unknown.
The aim of this present study was to investigate the metabolism and pharmacokinetic properties of DVAS in rats by using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-QTOF-MS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) method.
The metabolic profiling of DVAS was evaluated in vitro and in vivo by rat liver microsomes (RLMs) incubation and by rat bio-specimens, such as urine, feces, plasma, and bile, after the oral administration of 45 mg/kg DVAS. An efficient and sensitive UPLC-ESI-MS/MS method was developed and validated to simultaneously determine DVAS and its major four metabolites, namely, vasicine, deoxyvasicinone, vasicinone, and 1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-3-β-D-glucuronide in rat plasma. For pharmacokinetic studies, 32 Sprague-Dawley rats were randomly divided into four groups, namely, intravenous dosage group (2 mg/kg DVAS) and three oral dosage groups (5, 15, and 45 mg/kg DVAS). In addition, the activity of the components in plasma after intravenous administration of DVAS was evaluated by in vitro anti-butyrylcholinesterase (BChE) assays.
A total of 23 metabolites were found in RLMs, plasma, urine, feces, and bile by UPLC-ESI-QTOF-MS. The metabolic pathway of DVAS in vivo and in vitro mainly involved hydroxylation, dehydrogenation, acetylation, methylation, glucuronidation, and O-sulphate conjugation, and the C-3 and C-9 sites were the main metabolic soft spots. All 23 metabolites were detected in the urine sample, and 13, 8, 22, and 6 metabolites were identified from rat feces, plasma, bile, and RLMs, respectively. The standard curves of DVAS and four metabolites in rat plasma showed good linearity in the concentration range of 0.82-524.00 ng/mL with acceptable selectivity, precision, accuracy, recovery, and stability. DVAS exhibited linear dose-proportional pharmacokinetics at doses of 5, 15, and 45 mg/kg after oral administration, and the average oral absolute bioavailability of DVAS was 47.46%. The in vitro anti-BChE assays implied that the inhibitive activities were mainly due to the different concentrations of prototype DVAS.
DVAS can be rapidly absorbed and excreted by blood, and it is also extensively metabolized in vivo, and the anti-BChE activity in blood is mainly attributed to DVAS. These findings can lay a foundation for new drug development for DVAS.
Deng G
,Liu W
,Ma C
,Rong X
,Zhang Y
,Wang Y
,Wu C
,Cao N
,Ding W
,Guan H
,Cheng X
,Wang C
... -
《-》
beta-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO).
Peganum harmala L. is a multipurpose medicinal plant increasingly used for psychoactive recreational purposes (Ayahuasca analog). Harmaline, harmine, harmalol, harmol and tetrahydroharmine were identified and quantified as the main beta-carboline alkaloids in P. harmala extracts. Seeds and roots contained the highest levels of alkaloids with low levels in stems and leaves, and absence in flowers. Harmine and harmaline accumulated in dry seeds at 4.3% and 5.6% (w/w), respectively, harmalol at 0.6%, and tetrahydroharmine at 0.1% (w/w). Roots contained harmine and harmol with 2.0% and 1.4% (w/w), respectively. Seed extracts were potent reversible and competitive inhibitors of human monoamine oxidase (MAO-A) with an IC(50) of 27 microg/l whereas root extracts strongly inhibited MAO-A with an IC(50) of 159 microg/l. In contrast, they were poor inhibitors of MAO-B. Inhibition of MAO-A by seed extracts was quantitatively attributed to harmaline and harmine whereas inhibition by root extracts came from harmine with no additional interferences. Stems and leaves extracts were poor inhibitors of MAO. The potent inhibition of MAO-A by seed and root extracts of P. harmala containing beta-carbolines should contribute to the psychopharmacological and toxicological effects of this plant and could be the basis for its purported antidepressant actions.
Herraiz T
,González D
,Ancín-Azpilicueta C
,Arán VJ
,Guillén H
... -
《-》