Pan-Cancer Analysis of Immune Cell Infiltration Identifies a Prognostic Immune-Cell Characteristic Score (ICCS) in Lung Adenocarcinoma.
Background: The tumor microenvironment (TME) consists of heterogeneous cell populations, including malignant cells and nonmalignant cells that support tumor proliferation, invasion, and metastasis through extensive cross talk. The intra-tumor immune landscape is a critical factor influencing patient survival and response to immunotherapy. Methods: Gene expression data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases. Immune cell infiltration was determined by single-sample Gene Set Enrichment Analysis (ssGSEA) depending on the integrated immune gene sets from published studies. Univariate analysis was used to determine the prognostic value of the infiltrated immune cells. Least absolute shrinkage and selection operator (LASSO) regression was performed to screen for the most survival-relevant immune cells. An immune-cell characteristic score (ICCS) model was constructed by using multivariate Cox regression analysis. Results: The immune cell infiltration patterns across 32 cancer types were identified, and patients in the high immune cell infiltration cluster had worse overall survival (OS) but better progression-free interval (PFI) compared to the low immune cell infiltration cluster. However, immune cell infiltration showed inconsistent prognostic value depending on the cancer type. High immune cell infiltration (High CI) indicated a worse prognosis in brain lower grade glioma (LGG), glioblastoma multiforme (GBM), and uveal melanoma (UVM), and favorable prognosis in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangiocarcinoma (CHOL), head and neck squamous cell carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), sarcoma (SARC), and skin cutaneous melanoma (SKCM). LUAD prognosis was significantly influenced by the infiltration of 13 immune cell types, with high infiltration of all but Type 2 T helper (Th2) cells correlating with a favorable prognosis. The ICCS model based on six most survival-relevant immune cell populations was generated that classified patients into low- and high-ICCS groups with good and poor prognoses, respectively. The multivariate and stratified analyses further revealed that the ICCS was an independent prognostic factor for LUAD. Conclusions: The infiltration of immune cells in 32 cancer types was quantified, and considerable heterogeneity was observed in the prognostic relevance of these cells in different cancer types. An ICCS model was constructed for LUAD with competent prognostic performance, which can further deepen our understanding of the TME of LUAD and can have implications for immunotherapy.
Zuo S
,Wei M
,Wang S
,Dong J
,Wei J
... -
《Frontiers in Immunology》
Increased expression of TTC21A in lung adenocarcinoma infers favorable prognosis and high immune infiltrating level.
Lung adenocarcinoma (LUAD) is a crucial pathological type of lung cancer. Immune-infiltration of the tumor microenvironment positively associated with overall survival in LUAD. TTC21A is a gene has not reported in cancer, and the mechanism behind it is still unclear. Our study assesses TTC21A role in LUAD, via TCGA data.
GEPIA was utilized to analyze the expression of TTC21A in LUAD. We evaluated the influence of TTC21A on survival of LUAD patients by survival module. Then, data sets of LUAD were downloaded from TCGA. The correlations between clinical information and TTC21A expression were analyzed using logistic regression. Clinicopathologic characteristics associated with overall survival in TCGA patients using Cox regression. In addition, we explored the correlation between TTC21A and cancer immune infiltrates using CIBERSORT and "Correlation" module of GEPIA.
The univariate analysis using logistic regression, wherein TTC21A expression served as a categorical dependent variable (with a median expression value of 2.5), indicated that increased TTC21A expression is significantly correlated with pathological stage, tumor status and lymph nodes. Moreover, multivariate analysis revealed that the up-regulated TTC21A expression, negative results of pathological stage and distant metastasis are independent prognostic factors for good prognosis. Specifically, a positive correlation between increased TTC21A expression and immune infiltrating level of B cells, Neutrophils, Mast cells and T cells was established using CIBERSORT analysis. Furthermore, we confirmed it in "correlation" module of GEPIA.
Together with all these findings, increased TTC21A expression correlates with favorable prognosis and increased proportion of immune cells, such as B cells, Neutrophils, Mast cells and T cells in LUAD. These conclusions indicate that TTC21A could serve as a potential biomarker to assess prognosis and immune infiltration level in LUAD.
Wang W
,Ren S
,Wang Z
,Zhang C
,Huang J
... -
《-》
Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers.
Shc SH2-domain binding protein 1 (SHCBP1), a protein specific binding to SH2 domain of Src homolog and collagen homolog (Shc), takes part in the regulation of various signal transduction pathways, which has been reported to be associated with tumorigenesis and progression. However, the pathological mechanisms are not completely investigated. Thus, this study aimed to comprehensively elucidate the potential functions of SHCBP1 in multiple cancer types. The comprehensive analyses for SHCBP1 in various tumors, including gene expression, diagnosis, prognosis, immune-related features, genetic alteration, and function enrichment, were conducted based on multiple databases and analysis tools. SHCBP1 was upregulated in most types of cancers. The results of qRT-PCR had confirmed that SHCBP1 mRNA was significantly upregulated in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC) cell lines. Based on the receiver operating characteristic (ROC) and survival analysis, SHCBP1 was considered as a potential diagnostic and prognostic biomarker. Furthermore, SHCBP1 expression was linked with tumor immunity and immunosuppressive microenvironment according to the correlation analysis of SHCBP1 expression with immune cells infiltration, immune checkpoint genes, and immune-related genes (MHC genes, chemokines, and chemokines receptors). Moreover, SHCBP1 expression correlated with tumor mutational burden (TMB), microsatellite instability (MSI), and neoantigens. The feature of SHCBP1 mutational landscape in pan-cancer was identified. Finally, we focused on investigating the clinical significance and the potential biological role of SHCBP1 in LUAD. Our study comprehensively uncovered that SHCBP1 could be identified as an immune-related biomarker for cancer diagnosis and prognosis, and a potential therapeutic target for tumor immunotherapy.
Wang N
,Zhu L
,Wang L
,Shen Z
,Huang X
... -
《Computational and Structural Biotechnology Journal》
Pan-Cancer Analysis of PARP1 Alterations as Biomarkers in the Prediction of Immunotherapeutic Effects and the Association of Its Expression Levels and Immunotherapy Signatures.
Poly (ADP-ribose) polymerases-1 (PARP1) alterations are associated with PARP1 inhibitor resistance, regulating the function of Treg cells and PDL1 expression in tumor cells, and high PARP1 expression is significantly associated with aggressive behavior and chemotherapeutic resistance in several tumors. However, a comprehensive analysis of the predictive values of PARP1 alteration for immune checkpoint inhibitor (ICI) effectiveness in tumors remains unclear, and the associations between its expression and immunotherapy signatures also needs to be explored further.
We performed some analyses with the cBioPortal online database (https://www.cbioportal.org), TIMER2.0 (Tumor Immune Estimation Resource 2.0, http://timer.comp-genomics.org/) and TCGA database (https://xenabrowser.net or https://portal.gdc.cancer.gov/). Survival analysis was conducted using Kaplan-Meier method, and the associations between PARP1 transcription levels and immune checkpoint gene expression, the number of neoantigens, tumor mutation burden (TMB) levels, and microsatellite instability (MSI) event are analyzed by spearman correlation analysis and visualization of those mentioned above is performed using R, version 3.6.3 (http://www.r-project.org/).
We found that PARP1 was altered in 1338 (2.9%) out of 45604 patients with diverse tumors, which was associated with markedly higher TMB levels in a variety of tumors (P < 0.01). Impressively, patients with PARP1 alterations in advanced tumors showed better overall survival (OS) in the ICI-treated cohort (P = 0.016). PARP1 altered group was substantially correlated with higher immune infiltrates across most tumors, including CD8+ T cells in colorectal adenocarcinoma (P = 0.0061), endometrial carcinoma (P = 0.0033), stomach cancer (P = 0.033), and cervical cancer (P = 0.026), respectively. The PARP1 altered group showed high expression in transcription (P < 0.001), and higher expression of LAG3, PDCD1, CTLA-4, and TIGIT (P < 0.05). Higher PARP1 expression was present in 27 tumor compared the corresponding normal tissues using the GTEx and TCGA databases and it had a worse OS in several tumors (P < 0.05). Further, high PARP1 expression was significantly associated with six immune cells (B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils, and dendritic cells) in most tumors, including colon adenocarcinoma (COAD), head and neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), and liver hepatocellular carcinoma (LIHC) (P < 0.05). In particular, CD8+T cell infiltration, was also positively correlated with high PARP1 expression in bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), kidney renal papillary cell carcinoma (KIRP), brain lower grade glioma (LGG), LIHC, pancreatic adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), testicular germ cell tumors (TGCT), thymoma (THYM), uterine corpus endometrial carcinoma (UCEC), uveal melanoma (UVM) (P < 0.05, no data shown), and PARP1 expression was significantly positively correlated with the transcription levels of some of the 47 immune checkpoint genes, such as CD274, CTLA4, and PDCD1 in several tumors, including PAAD, LIHC, KIRC, HNSC, and BLCA (P < 0.05). A significant positive association between PARP1 expression and the number of immune neoantigen was found within COAD, KIRC, lung adenocarcinoma (LUAD), PAAD and THYM (P < 0.05), and there were also significantly positive correlations between PARP1 expression and TMB in many tumors like adrenocortical carcinoma (ACC), COAD, kidney chromophobe (KICH), LGG, LUAD, READ, skin cutaneous melanoma (SKCM) and stomach adenocarcinoma (STAD) (P < 0.05). In addition, high PARP1 expression was positively associated with microsatellite instability event in COAD, KIRP, BRCA, glioblastoma multiforme (GBM), lung squamous cell carcinoma (LUSC), LGG, READ, UCEC, SKCM and LUAD (P < 0.05).
Our results highlight the significance of PARP1 alterations as pan-cancer predictive biomarkers for ICI treatment, and its expression levels seem to be correlated with the status of immunotherapy-associated signatures, thus may be a promising biomarker for predicting ICI response in several tumors.
Zhang X
,Wang Y
,A G
,Qu C
,Chen J
... -
《Frontiers in Immunology》