Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages.
摘要:
Immune escape of breast cancer cells contributes to breast cancer pathogenesis. Tumour microenvironment stresses that disrupt protein homeostasis can produce endoplasmic reticulum (ER) stress. The miRNA-mediated translational repression of mRNAs has been extensively studied in regulating immune escape and ER stress in human cancers. In this study, we identified a novel microRNA (miR)-27a-3p and investigated its mechanistic role in promoting immune evasion. The binding affinity between miR-27a-3p and MAGI2 was predicted using bioinformatic analysis and verified by dual-luciferase reporter assay. Ectopic expression and inhibition of miR-27a-3p in breast cancer cells were achieved by transduction with mimics and inhibitors. Besides, artificial modulation of MAGI2 and PTEN was done to explore their function in ER stress and immune escape of cancer cells. Of note, exosomes were derived from cancer cells and co-cultured with macrophages for mechanistic studies. The experimental data suggested that ER stress biomarkers including GRP78, PERK, ATF6, IRE1α and PD-L1 were overexpressed in breast cancer tissues relative to paracancerous tissues. Endoplasmic reticulum stress promoted exosome secretion and elevated exosomal miR-27a-3p expression. Elevation of miR-27a-3p and PD-L1 levels in macrophages was observed in response to exosomes-overexpressing miR-27a-3p in vivo and in vitro. miR-27a-3p could target and negatively regulate MAGI2, while MAGI2 down-regulated PD-L1 by up-regulating PTEN to inactivate PI3K/AKT signalling pathway. Less CD4+ , CD8+ T cells and IL-2, and T cells apoptosis were observed in response to co-culture of macrophages and CD3+ T cells. Conjointly, exosomal miR-27a-3p promotes immune evasion by up-regulating PD-L1 via MAGI2/PTEN/PI3K axis in breast cancer.
收起
展开
DOI:
10.1111/jcmm.15367
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(716)
参考文献(37)
引证文献(82)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无