Bioinformatics-based analysis of the lncRNA-miRNA-mRNA and TF regulatory networks reveals functional genes in esophageal squamous cell carcinoma.

来自 PUBMED

作者:

Ye ZFang JWang ZWang LLi BLiu TWang YHua JWang FFu Z

展开

摘要:

Esophageal squamous cell carcinoma (ESCC) is a 5-year survival rate unsatisfied malignancies. The study aimed to identify the novel diagnostic and prognostic targets for ESCC. Expression profiling (GSE89102, GSE97051, and GSE59973) data were downloaded from the GEO database. Then, differentially expressed (DE) lncRNAs, DEmiRNAs, and genes (DEGs) with P-values < 0.05, and |log2FC| ≥ 2, were identified using GEO2R. Functional enrichment analysis of miRNA-related mRNAs and lncRNA co-expressed mRNA was performed. LncRNA-miRNA-mRNA, protein-protein interaction of miRNA-related mRNAs and DEGs, co-expression, and transcription factors-hub genes network were constructed. The transcriptional data, the diagnostic and prognostic value of hub genes were estimated with ONCOMINE, receiver operating characteristic (ROC) analyses, and Kaplan-Meier plotter, respectively. Also, the expressions of hub genes were assessed through qPCR and Western blot assays. The CDK1, VEGFA, PRDM10, RUNX1, CDK6, HSP90AA1, MYC, EGR1, and SOX2 used as hub genes. And among them, PRDM10, RUNX1, and CDK6 predicted worse overall survival (OS) in ESCC patients. Our results showed that the hub genes were significantly up-regulated in ESCA primary tumor tissues and cell lines, and exhibited excellent diagnostic efficiency. These results suggest that the hub genes may server as potential targets for the diagnosis and treatment of ESCC.

收起

展开

DOI:

10.1042/BSR20201727

被引量:

2

年份:

2020

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(533)

参考文献(62)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读