Advancing bioinks for 3D bioprinting using reactive fillers: A review.

来自 PUBMED

作者:

Heid SBoccaccini AR

展开

摘要:

The growing demand for personalized implants and tissue scaffolds requires advanced biomaterials and processing strategies for the fabrication of three-dimensional (3D) structures mimicking the complexity of the extracellular matrix. During the last years, biofabrication approaches like 3D printing of cell-laden (soft) hydrogels have been gaining increasing attention to design such 3D functional environments which resemble natural tissues (and organs). However, often these polymeric hydrogels show poor stability and low printing fidelity and hence various approaches in terms of multi-material mixtures are being developed to enhance pre- and post-printing features as well as cytocompatibility and post-printing cellular development. Additionally, bioactive properties improve the binding to the surrounding (host) tissue at the implantation site. In this review we focus on the state-of-the-art of a particular type of heterogeneous bioinks, which are composed of polymeric hydrogels incorporating inorganic bioactive fillers. Such systems include isotropic and anisotropic silicates like bioactive glasses and nanoclays or calcium-phosphates like hydroxyapatite (HAp), which provide in-situ crosslinking effects and add extra functionality to the matrix, for example mineralization capability. The present review paper discusses in detail such bioactive composite bioink systems based on the available literature, revealing that a great variety has been developed with substantially improved bioprinting characteristics, in comparison to the pure hydrogel counterparts, and enabling high viability of printed cells. The analysis of the results of the published studies demonstrates that bioactive fillers are a promising addition to hydrogels to print stable 3D constructs for regeneration of tissues. Progress and challenges of the development and applications of such composite bioink approaches are discussed and avenues for future research in the field are presented. STATEMENT OF SIGNIFICANCE: Biofabrication, involving the processing of biocompatible hydrogels including cells (bioinks), is being increasingly applied for developing complex tissue and organ mimicking structures. A variety of multi-material bioinks is being investigated to bioprint 3D constructs showing shape stability and long-term biological performance. Composite hydrogel bioinks incorporating inorganic bioreactive fillers for 3D bioprinting are the subject of this review paper. Results reported in the literature highlight the effect of bioactive fillers on bioink properties, printability and on cell behavior during and after printing and provide important information for optimizing the design of future bioinks for biofabrication, exploiting the extra functionalities provided by inorganic fillers. Further functionalization with drugs/growth factors can target enhanced printability and local drug release for more specialized biomedical therapies.

收起

展开

DOI:

10.1016/j.actbio.2020.06.040

被引量:

59

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(2838)

参考文献(0)

引证文献(59)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读