Role of LsrR in the regulation of antibiotic sensitivity in avian pathogenic Escherichia coli.

来自 PUBMED

作者:

Yu LLi WLi QChen XNi JShang FXue T

展开

摘要:

Avian pathogenic Escherichia coli (APEC) is a specific group of extraintestinal pathogenic E. coli that causes a variety of extraintestinal diseases in chickens, ducks, pigeons, turkeys, and other avian species. These diseases lead to significant economic losses in the poultry industry worldwide. However, owing to excessive use of antibiotics in the treatment of infectious diseases, bacteria have developed antibiotic resistance. The development of multidrug efflux pumps is one important bacterial antibiotic resistance mechanism. A multidrug efflux pump, MdtH, which belongs to the major facilitator superfamily of transporters, confers resistance to quinolone antibiotics such as norfloxacin and enoxacin. LsrR regulates hundreds of genes that participate in myriad biological processes, including mobility, biofilm formation, and antibiotic susceptibility. However, whether LsrR regulates mdtH transcription and then affects bacterial resistance to various antibiotics in APEC has not been reported. In the present study, the lsrR mutant was constructed from its parent strain APECX40 (WT), and high-throughput sequencing was performed to analyze the transcriptional profile of the WT and mutant XY10 strains. The results showed that lsrR gene deletion upregulated the mdtH transcript level. Furthermore, we also constructed the lsrR- and mdtH-overexpressing strains and performed antimicrobial susceptibility testing, antibacterial activity assays, real-time reverse transcription PCR, and electrophoretic mobility shift assays to investigate the molecular regulatory mechanism of LsrR on the MdtH multidrug efflux pump. The lsrR mutation and the mdtH-overexpressing strain decreased cell susceptibility to norfloxacin, ofloxacin, ciprofloxacin, and tetracycline by upregulating mdtH transcript levels. In addition, the lsrR-overexpressing strain increased cell susceptibility to norfloxacin, ofloxacin, ciprofloxacin, and tetracycline by downregulating mdtH transcript levels. Electrophoretic mobility shift assays indicated that LsrR directly binds to the mdtH promoter. Therefore, this study is the first to demonstrate that LsrR inhibits mdtH transcription by directly binding to its promoter region. This action subsequently increases susceptibility to the aforementioned four antibiotics in APECX40.

收起

展开

DOI:

10.1016/j.psj.2020.03.064

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(409)

参考文献(42)

引证文献(9)

来源期刊

POULTRY SCIENCE

影响因子:4.01

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读