RETRACTED: Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.
Chloroquine and hydroxychloroquine have been found to be efficient on SARS-CoV-2, and reported to be efficient in Chinese COV-19 patients. We evaluate the effect of hydroxychloroquine on respiratory viral loads.
French Confirmed COVID-19 patients were included in a single arm protocol from early March to March 16th, to receive 600mg of hydroxychloroquine daily and their viral load in nasopharyngeal swabs was tested daily in a hospital setting. Depending on their clinical presentation, azithromycin was added to the treatment. Untreated patients from another center and cases refusing the protocol were included as negative controls. Presence and absence of virus at Day6-post inclusion was considered the end point.
Six patients were asymptomatic, 22 had upper respiratory tract infection symptoms and eight had lower respiratory tract infection symptoms. Twenty cases were treated in this study and showed a significant reduction of the viral carriage at D6-post inclusion compared to controls, and much lower average carrying duration than reported in the litterature for untreated patients. Azithromycin added to hydroxychloroquine was significantly more efficient for virus elimination.
Despite its small sample size, our survey shows that hydroxychloroquine treatment is significantly associated with viral load reduction/disappearance in COVID-19 patients and its effect is reinforced by azithromycin.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). Concerns have been raised regarding this article, the substance of which relate to the articles' adherence to Elsevier's publishing ethics policies and the appropriate conduct of research involving human participants, as well as concerns raised by three of the authors themselves regarding the article's methodology and conclusions. Elsevier's Research Integrity and Publishing Ethics Team, in collaboration with the journal's co-owner, the International Society of Antimicrobial Chemotherapy (ISAC), and with guidance from an impartial field expert acting in the role of an independent Publishing Ethics Advisor, Dr. Jim Gray, Consultant Microbiologist at the Birmingham Children's and Women's Hospitals, U.K., conducted an investigation and determined that the below points constituted cause for retraction: • The journal has been unable to confirm whether any of the patients for this study were accrued before ethical approval had been obtained. The ethical approval dates for this article are stated as being 5th and 6th of March 2020 (ANSM and CPP respectively), while the article states that recruitment began in “early March”. The 17th author, Prof. Philippe Brouqui, has confirmed that the start date for patient accrual was 6th March 2020. The journal has not been able to establish whether all patients could have entered into the study in time for the data to have been analysed and included in the manuscript prior to its submission on the 20th March 2020, nor whether all patients were enrolled in the study upon admission as opposed to having been hospitalised for some time before starting the treatment described in the article. Additionally, the journal has not been able to establish whether there was equipoise between the study patients and the control patients. • The journal has not been able to establish whether the subjects in this study should have provided informed consent to receive azithromycin as part of the study. The journal has concluded that that there is reasonable cause to conclude that azithromycin was not considered standard care at the time of the study. The 17th author, Prof. Philippe Brouqui has attested that azithromycin treatment was not, at the time of the study, an experimental treatment but a possible treatment for, or preventative measure against, bacterial superinfections of viral pneumonia as described in section 2.4 of the article, and as such the treatment should be categorised as standard care that would not require informed consent. This does not fully address the journal's concerns around the use of azithromycin in the study. In section 3.1 of the article, it is stated that six patients received azithromycin to prevent (rather than treat) bacterial superinfection. All of these were amongst the patients who also received hydroxychloroquine (HCQ). None of the control patients are reported to have received azithromycin. This would indicate that only patients in the HCQ arm received azithromycin, all of whom were in one center. The recommendations for use of macrolides in France at the time the study was conducted indicate that azithromycin would not have been a logical agent to use as first-line prophylaxis against pneumonia due to the frequency of macrolide resistance amongst bacteria such as pneumococci. These two points suggest that azithromycin would not have been standard practice across southern France at the time the study was conducted and would have required informed consent. • Three of the authors of this article, Dr. Johan Courjon, Prof. Valérie Giordanengo, and Dr. Stéphane Honoré have contacted the journal to assert their opinion that they have concerns regarding the presentation and interpretation of results in this article and have stated they no longer wish to see their names associated with the article. • Author Prof. Valérie Giordanengo informed the journal that while the PCR tests administered in Nice were interpreted according to the recommendations of the national reference center, it is believed that those carried out in Marseille were not conducted using the same technique or not interpreted according to the same recommendations, which in her opinion would have resulted in a bias in the analysis of the data. This raises concerns as to whether the study was partially conducted counter to national guidelines at that time. The 17th author, Prof. Philippe Brouqui has attested that the PCR methodology was explained in reference 17 of the article. However, the article referred to by reference 17 describes several diagnostic approaches that were used (one PCR targeting the envelope protein only; another targeting the spike protein; and three commercially produced systems by QuantiNova, Biofire, and FTD). This reference does not clarify how the results were interpreted. It has also been noted during investigation of these concerns that only 76% (19/25) of patients were viral culture positive, resulting in uncertainty in the interpretation of PCR reports as has been raised by Prof. Giordanengo. As part of the investigation, the corresponding author was contacted and asked to provide an explanation for the above concerns. No response has been received within the deadline provided by the journal. Responses were received by the 3rd and 17th authors, Prof. Philippe Parola and Prof. Philippe Brouqui, respectively, and were reviewed as part of the investigation. These two authors, in addition to 1st author Dr. Philippe Gautret, 13th author Prof. Philippe Colson, and 15th author Prof. Bernard La Scola, disagreed with the retraction and dispute the grounds for it. Having followed due process and concluded the aforementioned investigation and based on the recommendation of Dr. Jim Gray acting in his capacity as independent Publishing Ethics Advisor, the co-owners of the journal (Elsevier and ISAC) have therefore taken the decision to retract the article.
Gautret P
,Lagier JC
,Parola P
,Hoang VT
,Meddeb L
,Mailhe M
,Doudier B
,Courjon J
,Giordanengo V
,Vieira VE
,Tissot Dupont H
,Honoré S
,Colson P
,Chabrière E
,La Scola B
,Rolain JM
,Brouqui P
,Raoult D
... -
《-》
Interleukin-6 blocking agents for treating COVID-19: a living systematic review.
Interleukin 6 (IL-6) blocking agents have been used for treating severe coronavirus disease 2019 (COVID-19). Their immunosuppressive effect might be valuable in patients with COVID-19 characterised by substantial immune system dysfunction by controlling inflammation and promoting disease tolerance.
To assess the effect of IL-6 blocking agents compared to standard care alone or with placebo on efficacy and safety outcomes in COVID-19. We will update this assessment regularly.
We searched the World Health Organization (WHO) International Clinical Trials Registry Platform (up to 11 February 2021) and the L-OVE platform, and Cochrane COVID-19 Study Register to identify trials up to 26 February 2021.
We included randomised controlled trials (RCTs) evaluating IL-6 blocking agents compared with standard care alone or with placebo for people with COVID-19, regardless of disease severity.
We followed standard Cochrane methodology. The protocol was amended to reduce the number of outcomes considered. Two review authors independently collected data and assessed the risk of bias with the Cochrane Risk of Bias 2 tool. We rated the certainty of evidence with the GRADE approach for the critical outcomes such as clinical improvement (defined as hospital discharge or improvement on the scale used by trialists to evaluate clinical progression or recovery) (day (D) 28 / ≥ D60); WHO Clinical Progression Score of level 7 or above (i.e. the proportion of participants with mechanical ventilation +/- additional organ support OR death) (D28 / ≥ D60); all-cause mortality (D28 / ≥ D60); incidence of any adverse events; and incidence of serious adverse events.
We identified 10 RCTs with available data including one platform trial comparing tocilizumab and sarilumab with standard of care. These trials evaluated tocilizumab (nine RCTs including two platform trials; seven were reported as peer-reviewed articles, two as preprints; 6428 randomised participants); and two sarilumab (one platform trial reported as peer reviewed article, one reported as preprint, 880 randomised participants). All trials included were multicentre trials. They were conducted in Brazil, China, France, Italy, UK, USA, and four were multi-country trials. The mean age range of participants ranged from 56 to 65 years; 4572 (66.3%) of trial participants were male. Disease severity ranged from mild to critical disease. The reported proportion of participants on oxygen at baseline but not intubated varied from 56% to 100% where reported. Five trials reported the inclusion of intubated patients at baseline. We identified a further 20 registered RCTs of tocilizumab compared to placebo/standard care (five completed without available results, five terminated without available results, eight ongoing, two not recruiting); 11 RCTs of sarilumab (two completed without results, three terminated without available results, six ongoing); six RCTs of clazakisumab (five ongoing, one not recruiting); two RCTs of olokizumab (one completed, one not recruiting); one of siltuximab (ongoing) and one RCT of levilimab (completed without available results). Of note, three were cancelled (2 tocilizumab, 1 clazakisumab). One multiple-arm RCT evaluated both tocilizumab and sarilumab compared to standard of care, one three-arm RCT evaluated tocilizumab and siltuximab compared to standard of care and consequently they appear in each respective comparison. Tocilizumab versus standard care alone or with placebo a. Effectiveness of tocilizumab for patients with COVID-19 Tocilizumab probably results in little or no increase in the outcome of clinical improvement at D28 (RR 1.06, 95% CI 1.00 to 1.13; I2 = 40.9%; 7 RCTs, 5585 participants; absolute effect: 31 more with clinical improvement per 1000 (from 0 fewer to 67 more); moderate-certainty evidence). However, we cannot exclude that some subgroups of patients could benefit from the treatment. We did not obtain data for longer-term follow-up (≥ D60). The effect of tocilizumab on the proportion of participants with a WHO Clinical Progression Score of level of 7 or above is uncertain at D28 (RR 0.99, 95% CI 0.56 to 1.74; I2 = 64.4%; 3 RCTs, 712 participants; low-certainty evidence). We did not obtain data for longer-term follow-up (≥ D60). Tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo (RR 0.89, 95% CI 0.82 to 0.97; I2 = 0.0%; 8 RCTs, 6363 participants; absolute effect: 32 fewer deaths per 1000 (from 52 fewer to 9 fewer); high-certainty evidence). The evidence suggests uncertainty around the effect on mortality at ≥ D60 (RR 0.86, 95% CI 0.53 to 1.40; I2 = 0.0%; 2 RCTs, 519 participants; low-certainty evidence). b. Safety of tocilizumab for patients with COVID-19 The evidence is very uncertain about the effect of tocilizumab on adverse events (RR 1.23, 95% CI 0.87 to 1.72; I2 = 86.4%; 7 RCTs, 1534 participants; very low-certainty evidence). Nevertheless, tocilizumab probably results in slightly fewer serious adverse events than standard care alone or placebo (RR 0.89, 95% CI 0.75 to 1.06; I2 = 0.0%; 8 RCTs, 2312 participants; moderate-certainty evidence). Sarilumab versus standard care alone or with placebo The evidence is uncertain about the effect of sarilumab on all-cause mortality at D28 (RR 0.77, 95% CI 0.43 to 1.36; 2 RCTs, 880 participants; low certainty), on all-cause mortality at ≥ D60 (RR 1.00, 95% CI 0.50 to 2.0; 1 RCT, 420 participants; low certainty), and serious adverse events (RR 1.17, 95% CI 0.77 to 1.77; 2 RCTs, 880 participants; low certainty). It is unlikely that sarilumab results in an important increase of adverse events (RR 1.05, 95% CI 0.88 to 1.25; 1 RCT, 420 participants; moderate certainty). However, an increase cannot be excluded No data were available for other critical outcomes.
On average, tocilizumab reduces all-cause mortality at D28 compared to standard care alone or placebo and probably results in slightly fewer serious adverse events than standard care alone or placebo. Nevertheless, tocilizumab probably results in little or no increase in the outcome clinical improvement (defined as hospital discharge or improvement measured by trialist-defined scales) at D28. The impact of tocilizumab on other outcomes is uncertain or very uncertain. With the data available, we were not able to explore heterogeneity. Individual patient data meta-analyses are needed to be able to identify which patients are more likely to benefit from this treatment. Evidence for an effect of sarilumab is uncertain and evidence for other anti-IL6 agents is unavailable. Thirty-nine RCTs of IL-6 blocking agents with no results are currently registered, of which nine are completed and seven trials were terminated with no results available. The findings of this review will be updated as new data are made available on the COVID-NMA platform (covid-nma.com).
Ghosn L
,Chaimani A
,Evrenoglou T
,Davidson M
,Graña C
,Schmucker C
,Bollig C
,Henschke N
,Sguassero Y
,Nejstgaard CH
,Menon S
,Nguyen TV
,Ferrand G
,Kapp P
,Riveros C
,Ávila C
,Devane D
,Meerpohl JJ
,Rada G
,Hróbjartsson A
,Grasselli G
,Tovey D
,Ravaud P
,Boutron I
... -
《Cochrane Database of Systematic Reviews》