T-Wave Abnormality as Electrocardiographic Signature of Myocardial Edema in Non-ST-Elevation Acute Coronary Syndromes.
T-wave abnormalities are common during the acute phase of non-ST-segment elevation acute coronary syndromes, but mechanisms underlying their occurrence are unclear. We hypothesized that T-wave abnormalities in the presentation of non-ST-segment elevation acute coronary syndromes correspond to the presence of myocardial edema.
Secondary analysis of a previously enrolled prospective cohort of patients presenting with non-ST-segment elevation acute coronary syndromes was conducted. Twelve-lead electrocardiography (ECG) and cardiac magnetic resonance with T2-weighted imaging were acquired before invasive coronary angiography. ECGs were classified dichotomously (ie, ischemic versus normal/nonischemic) and nominally according to patterns of presentation: no ST- or T-wave abnormalities, isolated T-wave abnormality, isolated ST depression, ST depression+T-wave abnormality. Myocardial edema was determined by expert review of T2-weighted images. Of 86 subjects (65% male, 59.4 years), 36 showed normal/nonischemic ECG, 25 isolated T-wave abnormalities, 11 isolated ST depression, and 14 ST depression+T-wave abnormality. Of 30 edema-negative subjects, 24 (80%) had normal/nonischemic ECGs. Isolated T-wave abnormality was significantly more prevalent in edema-positive versus edema-negative subjects (41.1% versus 6.7%, P=0.001). By multivariate analysis, an ischemic ECG showed a strong association with myocardial edema (odds ratio 12.23, 95% confidence interval 3.65-40.94, P<0.0001). Among individual ECG profiles, isolated T-wave abnormality was the single strongest predictor of myocardial edema (odds ratio 23.84, 95% confidence interval 4.30-132, P<0.0001). Isolated T-wave abnormality was highly specific (93%) but insensitive (43%) for detecting myocardial edema.
T-wave abnormalities in the setting of non-ST-segment elevation acute coronary syndromes are related to the presence of myocardial edema. High specificity of this ECG alteration identifies a change in ischemic myocardium associated with worse outcomes that is potentially reversible.
Cardona A
,Zareba KM
,Nagaraja HN
,Schaal SF
,Simonetti OP
,Ambrosio G
,Raman SV
... -
《-》
Electrocardiographic differentiation of early repolarization from subtle anterior ST-segment elevation myocardial infarction.
Anterior ST-segment elevation myocardial infarction (STEMI) can be difficult to differentiate from early repolarization on the ECG. We hypothesize that, in addition to ST-segment elevation, T-wave amplitude to R-wave amplitude ratio (T-wave amplitude(avg)/R-wave amplitude(avg)), and R-wave amplitude in leads V2 to V4, computerized corrected QT interval (QTc) and upward concavity would help to differentiate the 2. We seek to determine which ECG measurements best distinguish STEMI versus early repolarization.
This was a retrospective study of patients with anterior STEMI (2003 to 2009) and early repolarization (2003 to 2005) at 2 urban hospitals, one of which (Minneapolis Heart Institute) receives 500 STEMI patients per year. We compared the ECGs of nonobvious ("subtle") anterior STEMI with emergency department noncardiac chest pain patients with early repolarization. ST-segment elevation at the J point and 60 ms after the J point, T-wave amplitude, R-wave amplitude, QTc, upward concavity, J-wave notching, and T waves in V1 and V6 were measured. Multivariate logistic regression modeling was used to identify ECG measurements independently predictive of STEMI versus early repolarization in a derivation group and was subsequently validated in a separate group.
Of 355 anterior STEMIs identified, 143 were nonobvious, or subtle, compared with 171 early repolarization ECGs. ST-segment elevation was greater, R-wave amplitude lower, and T-wave amplitude(avg)/R-wave amplitude(avg) higher in leads V2 to V4 with STEMI versus early repolarization. Computerized QTc was also significantly longer with STEMI versus early repolarization. T-wave amplitude did not differ significantly between the groups, such that the T-wave amplitude(avg)/R-wave amplitude(avg) difference was entirely due to the difference in R-wave amplitude. An ECG criterion based on 3 measurements (R-wave amplitude in lead V4, ST-segment elevation 60 ms after J-point in lead V3, and QTc) was derived and validated for differentiating STEMI versus early repolarization, such that if the value of the equation ([1.196 x ST-segment elevation 60 ms after the J point in lead V3 in mm]+[0.059 x QTc in ms]-[0.326 x R-wave amplitude in lead V4 in mm]) is greater than 23.4 predicted STEMI and if less than or equal to 23.4, it predicted early repolarization in both groups, with overall sensitivity, specificity, and accuracy of 86% (95% confidence interval [CI] 79, 91), 91% (95% CI 85, 95), and 88% (95% CI 84, 92), respectively, with positive likelihood ratio 9.2 (95% CI 8.5 to 10) and negative likelihood ratio 0.1 (95% CI 0.08 to 0.3). Upward concavity, upright T wave in V1 or T wave, in V1 greater than T wave in V6, and J-wave notching did not provide important information.
R-wave amplitude is lower, ST-segment elevation greater, and QTc longer for subtle anterior STEMI versus early repolarization. In combination with other clinical data, this derived and validated ECG equation could be an important adjunct in the diagnosis of anterior STEMI.
Smith SW
,Khalil A
,Henry TD
,Rosas M
,Chang RJ
,Heller K
,Scharrer E
,Ghorashi M
,Pearce LA
... -
《-》