A biological effect-guided optimization approach using beam distal-edge avoidance for intensity-modulated proton therapy.

来自 PUBMED

作者:

Bai XLim GGrosshans DMohan RCao W

展开

摘要:

Linear energy transfer (LET)-guided methods have been applied to intensity-modulated proton therapy (IMPT) to improve its biological effect. However, using LET as a surrogate for biological effect ignores the topological relationship of the scanning spot to different structures of interest. In this study, we developed an optimization method that takes advantage of the continuing increase in LET beyond the physical dose Bragg peak. This method avoids placing high biological effect values in critical structures and increases biological effect in the tumor area without compromising target coverage. We selected the cases of two patients with brain tumors and two patients with head and neck tumors who had been treated with proton therapy at our institution. Three plans were created for each case: a plan based on conventional dose-based optimization (DoseOpt), one based on LET-incorporating optimization (LETOpt), and one based on the proposed distal-edge avoidance-guided optimization method (DEAOpt). In DEAOpt, an L1 -norm sparsity term, in which the penalty of each scanning spot was set according to the topological relationship between the organ positions and the location of the peak scaled LET-weighted dose (c LETxD) was added to a conventional dose-based optimization objective function. All plans were normalized to give the same target dose coverage. Dose (assuming a constant relative biological effectiveness value of 1.1, as in clinical practice), biological effect (c LETxD), and computing time consumption were evaluated and compared among the three optimization approaches for each patient case. For all four cases, all three optimization methods generated comparable dose coverage in both target and critical structures. The LETOpt plans and DEAOpt plans reduced biological effect hot spots in critical structures and increased biological effect in the target volumes to a similar extent. For the target, the c LETxD98% and c LETxD2% in the DEAOpt plans were on average 7.2% and 11.74% higher than in the DoseOpt plans, respectively. For the brainstem, the c LETxDmean in the DEAOpt plans was on average 33.38% lower than in the DoseOpt plans. In addition, the DEAOpt method saved 30.37% of the computation cost over the LETOpt method. DEAOpt is an alternative IMPT optimization approach that correlates the location of scanning spots with biological effect distribution. IMPT could benefit from the use of DEAOpt because this method not only delivers comparable biological effects to LETOpt plans, but also is faster.

收起

展开

DOI:

10.1002/mp.14335

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(167)

参考文献(0)

引证文献(7)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读