Predictors of Discharge Settings After Total Knee Arthroplasty in Medicare Patients.

来自 PUBMED

作者:

Welsh RLWild DLKarmarkar AMLeland NEBaillargeon JGOttenbacher KJGraham JE

展开

摘要:

To determine the factors associated with acute hospital discharge to the 3 most common postacute settings following total knee arthroplasty (TKA): inpatient rehabilitation facilities (IRFs), skilled nursing facilities (SNFs), and directly back to the community. Retrospective cohort study. Acute care hospitals submitting claims to Medicare. National cohort (N=1,189,286) of 100% Medicare Part A data files from 2009-2011. Not applicable. Observed rates and adjusted odds of discharge to the 3 main postacute settings based on the clinical and facility level variables: amount of comorbidity, bilateral procedures, and facility TKA volume. Using IRF discharge as the reference, patients who received a bilateral procedure had lower odds of both SNF and community discharge, patients with more comorbidity had lower odds for community discharge and higher odds for SNF discharge, and patients who received their TKA from hospitals with lower TKA volumes had lower odds of SNF and community discharge. Clinical populations within Medicare beneficiaries may systematically vary across the 3 most common discharge settings following TKA. This information may be helpful for a better understanding on which patient or clinical factors influence postacute care settings following TKA. Additional research including functional status, living situation, and social support systems would be beneficial.

收起

展开

DOI:

10.1016/j.apmr.2020.05.019

被引量:

0

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(100)

参考文献(0)

引证文献(0)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读