Prediction of sperm extraction in non-obstructive azoospermia patients: a machine-learning perspective.

来自 PUBMED

作者:

Zeadna AKhateeb NRokach LLior YHar-Vardi IHarlev AHuleihel MLunenfeld ELevitas E

展开

摘要:

Can a machine-learning-based model trained in clinical and biological variables support the prediction of the presence or absence of sperm in testicular biopsy in non-obstructive azoospermia (NOA) patients? Our machine-learning model was able to accurately predict (AUC of 0.8) the presence or absence of spermatozoa in patients with NOA. Patients with NOA can conceive with their own biological gametes using ICSI in combination with successful testicular sperm extraction (TESE). Testicular sperm retrieval is successful in up to 50% of men with NOA. However, to the best of our knowledge, there is no existing model that can accurately predict the success of sperm retrieval in TESE. Moreover, machine-learning has never been used for this purpose. A retrospective cohort study of 119 patients who underwent TESE in a single IVF unit between 1995 and 2017 was conducted. All patients with NOA who underwent TESE during their fertility treatments were included. The development of gradient-boosted trees (GBTs) aimed to predict the presence or absence of spermatozoa in patients with NOA. The accuracy of these GBTs was then compared to a similar multivariate logistic regression model (MvLRM). We employed univariate and multivariate binary logistic regression models to predict the probability of successful TESE using a dataset from a retrospective cohort. In addition, we examined various ensemble machine-learning models (GBT and random forest) and evaluated their predictive performance using the leave-one-out cross-validation procedure. A cutoff value for successful/unsuccessful TESE was calculated with receiver operating characteristic (ROC) curve analysis. ROC analysis resulted in an AUC of 0.807 ± 0.032 (95% CI 0.743-0.871) for the proposed GBTs and 0.75 ± 0.052 (95% CI 0.65-0.85) for the MvLRM for the prediction of presence or absence of spermatozoa in patients with NOA. The GBT approach and the MvLRM yielded a sensitivity of 91% vs. 97%, respectively, but the GBT approach has a specificity of 51% compared with 25% for the MvLRM. A total of 78 (65.3%) men with NOA experienced successful TESE. FSH, LH, testosterone, semen volume, age, BMI, ethnicity and testicular size on clinical evaluation were included in these models. This study is a retrospective cohort study, with all the associated inherent biases of such studies. This model was used only for TESE, since micro-TESE is not performed at our center. Machine-learning models may lay the foundation for a decision support system for clinicians together with their NOA patients concerning TESE. The findings of this study should be confirmed with further larger and prospective studies. The study was funded by the Division of Obstetrics and Gynecology, Soroka University Medical Center, there are no potential conflicts of interest for all authors.

收起

展开

DOI:

10.1093/humrep/deaa109

被引量:

15

年份:

2020

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(528)

参考文献(0)

引证文献(15)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读