Multiplexing primer/probe sets for detection of SARS-CoV-2 by qRT-PCR.

来自 PUBMED

作者:

Perchetti GANalla AKHuang MLJerome KRGreninger AL

展开

摘要:

The novel respiratory virus SARS-CoV-2, responsible for over 380,000 COVID-19 related deaths, has caused significant strain on healthcare infrastructure and clinical laboratories globally. The pandemic's initial challenges include broad diagnostic testing, consistent reagent supply lines, and access to laboratory instruments and equipment. In early 2020, primer/probe sets distributed by the CDC utilized the same fluorophore for molecular detection - requiring multiple assays to be run in parallel - consuming valuable and limited resources. Nasopharyngeal swabs submitted to UW Virology for SARS-CoV-2 clinical testing were extracted, amplified by our laboratory developed test (LDT) - a CDC-based quantitative reverse transcriptase PCR reaction - and analyzed for agreement between the multiplexed assay. Laboratory- confirmed respiratory infection samples were included to evaluate assay cross-reaction specificity. Triplexing correctly identified SARS-CoV-2 in 98.4% of confirmed positive or inconclusive patient samples by single-plex LDT (n = 183/186). All 170 SARS-CoV-2 negative samples tested by single-plex LDT were negative by triplexing. Other laboratory-confirmed respiratory infections did not amplify for SARS-CoV-2 in the triplex reaction. Multiplexing two virus-specific gene targets and an extraction control was found to be comparable to running parallel assays independently, while significantly improving assay throughput.

收起

展开

DOI:

10.1016/j.jcv.2020.104499

被引量:

20

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(356)

参考文献(15)

引证文献(20)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读