Plumbagin ameliorates LPS-induced acute lung injury by regulating PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling pathways.
Acute lung injury (ALI) is a major pathophysiological problem characterized by severe inflammation, resulting in high morbidity and mortality. Plumbagin (PL), a major bioactive constituent extracted from the traditional Chinese herb Plumbago zeylanica, has been shown to possess anti-inflammatory and antioxidant pharmacological activities. However, its protective effect on ALI has not been extensively studied. The objective of this study was to investigate the protective effect of PL against ALI induced by LPS and to elucidate its possible mechanisms both in vivo and in vitro. PL treatment significantly inhibited pathological injury, MPO activity, and the wet/dry ratio in lung tissues, and decreased the levels of inflammatory cells and inflammatory cytokines TNF-α, IL-1β, IL-6 in BALF induced by LPS. In addition, PL inhibited the activation of the PI3K/AKT/mTOR signalling pathway, increased the activity of antioxidant enzymes CAT, SOD, GSH and activated the Keap1/Nrf2/HO-1 signalling pathway during ALI induced by LPS. To further assess the association between the inhibitory effects of PL on ALI and the PI3K/AKT/mTOR and Keap1/Nrf2/HO-1 signalling, we pretreated RAW264.7 cells with 740Y-P and ML385. The results showed that the activation of PI3K/AKT/mTOR signalling reversed the protective effect of PL on inflammatory response induced by LPS. Moreover, the inhibitory effects of PL on the production of inflammatory cytokines induced by LPS also inhibited by downregulating Keap1/Nrf2/HO-1 signalling. In conclusion, the results indicate that the PL ameliorate LPS-induced ALI by regulating the PI3K/AKT/mTOR and Keap1-Nrf2/HO-1 signalling, which may provide a novel therapeutic perspective for PL in inhibiting ALI.
Liu Z
,Wei J
,Sun H
,Xu L
... -
《-》
Bakuchiol regulates TLR4/MyD88/NF-κB and Keap1/Nrf2/HO-1 pathways to protect against LPS-induced acute lung injury in vitro and in vivo.
Bakuchiol (Bak) possesses a protective effect in acute lung injury (ALI). Nonetheless, the molecular processes that regulate the protective activity of Bak in ALI remain elusive. Lipopolysaccharide (LPS)-treated rats and RLE-6TN cells were used as the ALI models in vivo and in vitro to investigate the function and mechanism of Bak. Rats were divided into four groups: control, LPS, LPS + Bak (30 mg/kg), and LPS + Bak (60 mg/kg). RLE-6TN cells were assigned into four groups: control, LPS, LPS + Bak (10 µM), and LPS + Bak (20 µM). Myeloperoxidase (MPO) and 4-hydroxy-2-nonenal (4-HNE) levels were detected by immunohistochemistry (IHC). The levels of TNF-α, IL-6, and IL-1β were quantified by ELISA. Apoptosis was analyzed by TdT-mediated dUTP nick-end labeling (TUNEL) staining and flow cytometry. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and reactive oxygen species (ROS) were assayed to evaluate oxidative stress. In LPS-induced rats, Bak attenuated pathological injury, lung wet/dry weight ratio, MPO expression, and protein concentration and cell number in bronchial alveolar lavage fluid (BALF). Bak decreased the secretion of TNF-α, IL-6, and IL-1β in BALF. Bak reduced MDA content and 4-HNE expression, and increased SOD and GSH-Px activities in lung tissues. Bak also repressed pulmonary apoptosis by decreasing Bax expression and enhancing Bcl-2 expression. In LPS-treated RLE-6TN cells, Bak downregulated the mRNA levels of TNF-α, IL-6, and IL-1β and inhibited the protein expression of iNOS and COX2. Bak decreased MDA level and ROS production and increased SOD and GSH-Px activities. Bak also suppressed cell apoptosis, reduced Bax expression, and increased Bcl-2 expression. Moreover, Bak decreased the expression of TLR4, MyD88, p-IκBα, and p-p65. Additionally, Bak inhibited Keap1 expression and increased Nrf2 and HO-1 levels. Bak protects against LPS-induced inflammation, oxidative stress, and apoptosis in ALI by regulating TLR4/MyD88/NF-κB and Keap1/Nrf2/HO-1 pathways.
Zhao L
,Zhang Z
,Li P
,Gao Y
,Shi Y
... -
《-》