Cortical Coding of Whisking Phase during Surface Whisking.
摘要:
In rodent whisker sensation, whisker position signals, including whisking phase, are integrated with touch signals to enable spatially accurate tactile perception, but other functions of phase coding are unclear. We investigate how phase coding affects the neural coding of surface features during surface whisking. In mice performing rough-smooth discrimination, S1 units exhibit much stronger phase tuning during surface whisking than in prior studies of whisking in air. Among putative pyramidal cells, preferred phase tiles phase space, but protraction phases are strongly over-represented. Fast-spiking units are nearly all protraction tuned. This protraction bias increases the coding of stick-slip whisker events during protraction, suggesting that surface features are preferentially encoded during protraction. Correspondingly, protraction-tuned units encode rough-smooth texture better than retraction-tuned units and encode the precise spatial location of surface ridges with higher acuity. This suggests that protraction is the main information-gathering phase for high-resolution surface features, with phase coding organized to support this function.
收起
展开
DOI:
10.1016/j.cub.2020.05.064
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(133)
参考文献(33)
引证文献(8)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无