Prevalence of Cefotaxime-Resistant Escherichia coli Isolates from Healthy Cattle and Sheep in Northern Spain: Phenotypic and Genome-Based Characterization of Antimicrobial Susceptibility.

来自 PUBMED

作者:

Tello MOcejo MOporto BHurtado A

展开

摘要:

In order to estimate herd-level prevalence of extended-spectrum β-lactamase/AmpC β-lactamase (ESBL/AmpC)- and carbapenemase-producing commensal Escherichia coli in ruminants in the Basque Country (northern Spain), a cross-sectional survey was conducted in 2014 to 2016 in 300 herds using selective isolation. ESBL-/AmpC-producing E. coli was isolated in 32.9% of dairy cattle herds, 9.6% of beef cattle herds, and 7.0% of sheep flocks. No carbapenemase-producing E. coli was isolated. Phenotypic antimicrobial susceptibility determined by broth microdilution using EUCAST epidemiological cutoff values identified widespread coresistance to extended-spectrum cephalosporins and other antimicrobials (110/135 isolates), particularly tetracycline, sulfamethoxazole, trimethoprim, and ciprofloxacin. All isolates were susceptible to tigecycline, imipenem, meropenem, and colistin. The genomes of 66 isolates were sequenced using an Illumina NovaSeq 6000 and screened for antimicrobial resistance determinants against ResFinder and PointFinder. The plasmid/chromosomal locations of resistance genes were predicted with PlasFlow, and plasmid replicons were identified using PlasmidFinder. Fifty-two acquired resistance genes and point mutations in another four genes that coded for resistance to 11 antimicrobial classes were identified. Fifty-five genomes carried ESBL-encoding genes, blaCTX-M-14 being the most common, and 11 carried determinants of the AmpC phenotype, mostly the blaCMY-2 gene. Additionally, genes coding for β-lactamases of the CTX-M group 9 were detected as well as the sporadic presence of blaSHV-12, blaCMY-4, and a point mutation in the ampC promoter. Only a bovine isolate coharbored more than one ESBL/AmpC genetic determinant (blaCTX-M-14 and a mutation in the ampC promoter), confirming its ESBL- and AmpC β-lactamase-producing phenotype. Most ESBL/AmpC genes were located in IncI1 plasmids, which also carried a great variety of other antimicrobial resistance genes.IMPORTANCE Extended-spectrum β-lactamase (ESBL)- and AmpC β-lactamase (AmpC)-producing E. coli isolates have emerged in recent years as some of the fastest spreading antimicrobial resistance determinants in humans and food-producing animals, becoming a concern for animal and public health. This study provided insight into the prevalence of cefotaxime-resistant E. coli in cattle and sheep in the Basque Country and the associated genetic determinants of antimicrobial resistance. These constituted an important contribution to the limited repository of such data for cattle in the region and for sheep worldwide. Antimicrobial susceptibility testing by phenotypic and molecular methods is key in surveillance programs to enhance early detection of resistance development, monitor resistance trends, and provide guidance to clinicians in selecting the adequate therapy.

收起

展开

DOI:

10.1128/AEM.00742-20

被引量:

19

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(2716)

参考文献(56)

引证文献(19)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读