Using Reports of Symptoms and Diagnoses on Social Media to Predict COVID-19 Case Counts in Mainland China: Observational Infoveillance Study.
Coronavirus disease (COVID-19) has affected more than 200 countries and territories worldwide. This disease poses an extraordinary challenge for public health systems because screening and surveillance capacity is often severely limited, especially during the beginning of the outbreak; this can fuel the outbreak, as many patients can unknowingly infect other people.
The aim of this study was to collect and analyze posts related to COVID-19 on Weibo, a popular Twitter-like social media site in China. To our knowledge, this infoveillance study employs the largest, most comprehensive, and most fine-grained social media data to date to predict COVID-19 case counts in mainland China.
We built a Weibo user pool of 250 million people, approximately half the entire monthly active Weibo user population. Using a comprehensive list of 167 keywords, we retrieved and analyzed around 15 million COVID-19-related posts from our user pool from November 1, 2019 to March 31, 2020. We developed a machine learning classifier to identify "sick posts," in which users report their own or other people's symptoms and diagnoses related to COVID-19. Using officially reported case counts as the outcome, we then estimated the Granger causality of sick posts and other COVID-19 posts on daily case counts. For a subset of geotagged posts (3.10% of all retrieved posts), we also ran separate predictive models for Hubei province, the epicenter of the initial outbreak, and the rest of mainland China.
We found that reports of symptoms and diagnosis of COVID-19 significantly predicted daily case counts up to 14 days ahead of official statistics, whereas other COVID-19 posts did not have similar predictive power. For the subset of geotagged posts, we found that the predictive pattern held true for both Hubei province and the rest of mainland China regardless of the unequal distribution of health care resources and the outbreak timeline.
Public social media data can be usefully harnessed to predict infection cases and inform timely responses. Researchers and disease control agencies should pay close attention to the social media infosphere regarding COVID-19. In addition to monitoring overall search and posting activities, leveraging machine learning approaches and theoretical understanding of information sharing behaviors is a promising approach to identify true disease signals and improve the effectiveness of infoveillance.
Shen C
,Chen A
,Luo C
,Zhang J
,Feng B
,Liao W
... -
《JOURNAL OF MEDICAL INTERNET RESEARCH》
Public Engagement and Government Responsiveness in the Communications About COVID-19 During the Early Epidemic Stage in China: Infodemiology Study on Social Media Data.
Effective risk communication about the outbreak of a newly emerging infectious disease in the early stage is critical for managing public anxiety and promoting behavioral compliance. China has experienced the unprecedented epidemic of the coronavirus disease (COVID-19) in an era when social media has fundamentally transformed information production and consumption patterns.
This study examined public engagement and government responsiveness in the communications about COVID-19 during the early epidemic stage based on an analysis of data from Sina Weibo, a major social media platform in China.
Weibo data relevant to COVID-19 from December 1, 2019, to January 31, 2020, were retrieved. Engagement data (likes, comments, shares, and followers) of posts from government agency accounts were extracted to evaluate public engagement with government posts online. Content analyses were conducted for a random subset of 644 posts from personal accounts of individuals, and 273 posts from 10 relatively more active government agency accounts and the National Health Commission of China to identify major thematic contents in online discussions. Latent class analysis further explored main content patterns, and chi-square for trend examined how proportions of main content patterns changed by time within the study time frame.
The public response to COVID-19 seemed to follow the spread of the disease and government actions but was earlier for Weibo than the government. Online users generally had low engagement with posts relevant to COVID-19 from government agency accounts. The common content patterns identified in personal and government posts included sharing epidemic situations; general knowledge of the new disease; and policies, guidelines, and official actions. However, personal posts were more likely to show empathy to affected people (χ21=13.3, P<.001), attribute blame to other individuals or government (χ21=28.9, P<.001), and express worry about the epidemic (χ21=32.1, P<.001), while government posts were more likely to share instrumental support (χ21=32.5, P<.001) and praise people or organizations (χ21=8.7, P=.003). As the epidemic evolved, sharing situation updates (for trend, χ21=19.7, P<.001) and policies, guidelines, and official actions (for trend, χ21=15.3, P<.001) became less frequent in personal posts but remained stable or increased significantly in government posts. Moreover, as the epidemic evolved, showing empathy and attributing blame (for trend, χ21=25.3, P<.001) became more frequent in personal posts, corresponding to a slight increase in sharing instrumental support, praising, and empathizing in government posts (for trend, χ21=9.0, P=.003).
The government should closely monitor social media data to improve the timing of communications about an epidemic. As the epidemic evolves, merely sharing situation updates and policies may be insufficient to capture public interest in the messages. The government may adopt a more empathic communication style as more people are affected by the disease to address public concerns.
Liao Q
,Yuan J
,Dong M
,Yang L
,Fielding R
,Lam WWT
... -
《JOURNAL OF MEDICAL INTERNET RESEARCH》
Mining the Characteristics of COVID-19 Patients in China: Analysis of Social Media Posts.
In December 2019, pneumonia cases of unknown origin were reported in Wuhan City, Hubei Province, China. Identified as the coronavirus disease (COVID-19), the number of cases grew rapidly by human-to-human transmission in Wuhan. Social media, especially Sina Weibo (a major Chinese microblogging social media site), has become an important platform for the public to obtain information and seek help.
This study aims to analyze the characteristics of suspected or laboratory-confirmed COVID-19 patients who asked for help on Sina Weibo.
We conducted data mining on Sina Weibo and extracted the data of 485 patients who presented with clinical symptoms and imaging descriptions of suspected or laboratory-confirmed cases of COVID-19. In total, 9878 posts seeking help on Sina Weibo from February 3 to 20, 2020 were analyzed. We used a descriptive research methodology to describe the distribution and other epidemiological characteristics of patients with suspected or laboratory-confirmed SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. The distance between patients' home and the nearest designated hospital was calculated using the geographic information system ArcGIS.
All patients included in this study who sought help on Sina Weibo lived in Wuhan, with a median age of 63.0 years (IQR 55.0-71.0). Fever (408/485, 84.12%) was the most common symptom. Ground-glass opacity (237/314, 75.48%) was the most common pattern on chest computed tomography; 39.67% (167/421) of families had suspected and/or laboratory-confirmed family members; 36.58% (154/421) of families had 1 or 2 suspected and/or laboratory-confirmed members; and 70.52% (232/329) of patients needed to rely on their relatives for help. The median time from illness onset to real-time reverse transcription-polymerase chain reaction (RT-PCR) testing was 8 days (IQR 5.0-10.0), and the median time from illness onset to online help was 10 days (IQR 6.0-12.0). Of 481 patients, 32.22% (n=155) lived more than 3 kilometers away from the nearest designated hospital.
Our findings show that patients seeking help on Sina Weibo lived in Wuhan and most were elderly. Most patients had fever symptoms, and ground-glass opacities were noted in chest computed tomography. The onset of the disease was characterized by family clustering and most families lived far from the designated hospital. Therefore, we recommend the following: (1) the most stringent centralized medical observation measures should be taken to avoid transmission in family clusters; and (2) social media can help these patients get early attention during Wuhan's lockdown. These findings can help the government and the health department identify high-risk patients and accelerate emergency responses following public demands for help.
Huang C
,Xu X
,Cai Y
,Ge Q
,Zeng G
,Li X
,Zhang W
,Ji C
,Yang L
... -
《JOURNAL OF MEDICAL INTERNET RESEARCH》