Screening for pre-eclampsia at 11-13 weeks' gestation: use of pregnancy-associated plasma protein-A, placental growth factor or both.

来自 PUBMED

作者:

Mazer Zumaeta AWright ASyngelaki AMaritsa VADa Silva ABNicolaides KH

展开

摘要:

First-trimester screening for pre-eclampsia (PE) is useful because treatment of the high-risk group with aspirin reduces the rate of early PE with delivery at < 34 weeks' gestation by about 80% and that of preterm PE with delivery at < 37 weeks by 60%. In previous studies, we reported that the best way of identifying the high-risk group is by a combination of maternal factors, mean arterial pressure (MAP), uterine artery pulsatility index (UtA-PI) and serum placental growth factor (PlGF). An alternative biochemical marker is pregnancy-associated plasma protein-A (PAPP-A), which is used widely as part of early screening for trisomy. The objective of this study was to examine the additive value of PlGF and PAPP-A in first-trimester screening for preterm PE by maternal factors, MAP and UtA-PI and define the risk cut-off and screen-positive rate to achieve a desired detection rate of PE if PAPP-A rather than PlGF was to be used for first-trimester screening. This was a non-intervention screening study. The data were derived from prospective screening for adverse obstetric outcomes in women with singleton pregnancy attending for a routine first-trimester hospital visit. Patient-specific risks of delivery with PE at < 37 weeks' gestation were calculated using the competing-risks model to combine the prior distribution of gestational age at delivery with PE, obtained from maternal characteristics and medical history, with multiples of the median (MoM) values of MAP, UtA-PI, PlGF and PAPP-A. The performance of screening in the total population and in subgroups of women of white and black racial origin was estimated. McNemar's test was used to compare the detection rate, for a fixed screen-positive rate, of screening with and without PlGF and PAPP-A. Risk cut-offs and screen-positive rates to achieve desired detection rates of preterm PE were determined in screening with and without PlGF and PAPP-A. The study population was composed of 60 875 singleton pregnancies, including 1736 (2.9%) that developed PE. There are three main findings of this study. First, the performance of first-trimester screening for PE by a combination of maternal factors, MAP, UtA-PI and PlGF is superior to that of screening by maternal factors, MAP, UtA-PI and PAPP-A; for example, in screening by maternal factors, MAP, UtA-PI and PlGF, at a screen-positive rate of 10%, the detection rate of PE with delivery at < 37 weeks' gestation was 74.1%, which was 7.1% (95% CI, 3.8-10.6%) higher than in screening by maternal factors, MAP, UtA-PI and PAPP-A. Second, addition of serum PAPP-A does not improve the prediction of PE provided by maternal factors, MAP, UtA-PI and PlGF. Third, the risk cut-off and screen-positive rate to achieve a given fixed detection rate of preterm PE vary according to the racial composition of the study population and whether the biomarkers used for screening are MAP, UtA-PI and PlGF or MAP, UtA-PI and PAPP-A. For example, in screening by a combination of maternal factors, MAP, UtA-PI and PlGF in white women, if the desired detection rate of preterm PE was 75%, the risk cut-off should be 1 in 136 and the screen-positive rate would be 14.1%; in black women, to achieve a detection rate of 75%, the risk cut-off should be 1 in 29 and the screen-positive rate would be 12.5%. In screening by a combination of maternal factors, MAP, UtA-PI and PAPP-A in white women, if the desired detection rate of preterm PE was 75%, the risk cut-off should be 1 in 140 and the screen-positive rate would be 16.9%; in black women, to achieve a detection rate of 75%, the risk cut-off should be 1 in 44 and the screen-positive rate would be 19.3%. In first-trimester screening for PE, the preferred biochemical marker is PlGF rather than PAPP-A. However, if PAPP-A was to be used rather than PlGF, the same detection rate can be achieved but at a higher screen-positive rate. © 2020 Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.

收起

展开

DOI:

10.1002/uog.22093

被引量:

23

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1120)

参考文献(0)

引证文献(23)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读