External beam radiation dose escalation for high grade glioma.

来自 PUBMED

作者:

Khan LSoliman HSahgal APerry JXu WTsao MN

展开

摘要:

This is an updated version of the original Cochrane Review published in Issue 8, 2016. High grade glioma (HGG) is a rapidly growing brain tumour in the supporting cells of the nervous system, with several subtypes such as glioblastoma (grade IV astrocytoma), anaplastic (grade III) astrocytoma and anaplastic (grade III) oligodendroglioma. Studies have investigated the best strategy to give radiation to people with HGG. Conventional fractionated radiotherapy involves giving a daily radiation dose (called a fraction) of 180 cGy to 200 cGy. Hypofractionated radiotherapy uses higher daily doses, which reduces the overall number of fractions and treatment time. Hyperfractionated radiotherapy which uses a lower daily dose with a greater number of fractions and multiple fractions per day to deliver a total dose at least equivalent to external beam daily conventionally fractionated radiotherapy in the same time frame. The aim is to reduce the potential for late toxicity. Accelerated radiotherapy (dose escalation) refers to the delivery of multiple fractions per day using daily doses of radiation consistent with external beam daily conventionally fractionated radiotherapy doses. The aim is to reduce the overall treatment time; typically, two or three fractions per day may be delivered with a six to eight hour gap between fractions. To assess the effects of postoperative external beam radiation dose escalation in adults with HGG. We searched CENTRAL, MEDLINE Ovid and Embase Ovid to August 2019 for relevant randomised phase III trials. We included adults with a pathological diagnosis of HGG randomised to the following external beam radiation regimens: daily conventionally fractionated radiotherapy versus no radiotherapy; hypofractionated radiotherapy versus daily conventionally fractionated radiotherapy; hyperfractionated radiotherapy versus daily conventionally fractionated radiotherapy or accelerated radiotherapy versus daily conventionally fractionated radiotherapy. The primary outcomes were overall survival and adverse effects. The secondary outcomes were progression free survival and quality of life. We used the standard methodological procedures expected by Cochrane. We assessed the certainty of the evidence using the GRADE approach. Since the last version of this review, we identified no new relevant trials for inclusion. We included 11 randomised controlled trials (RCTs) with 2062 participants and 1537 in the relevant arms for this review. There was an overall survival benefit for people with HGG receiving postoperative radiotherapy compared to the participants receiving postoperative supportive care. For the four pooled RCTs (397 participants), the overall hazard ratio (HR) for survival was 2.01 favouring postoperative radiotherapy (95% confidence interval (CI) 1.58 to 2.55; P < 0.00001; moderate-certainty evidence). Although these trials may not have completely reported adverse effects, they did not note any significant toxicity attributable to radiation. Progression free survival and quality of life could not be pooled due to lack of data. Overall survival was similar between hypofractionated and conventional radiotherapy in five trials (943 participants), where the HR was 0.95 (95% CI 0.78 to 1.17; P = 0.63; very low-certainty evidence. The trials reported that hypofractionated and conventional radiotherapy were well tolerated with mild acute adverse effects. These trials only reported one participant in the hypofractionated arm developing symptomatic radiation necrosis that required surgery. Progression free survival and quality of life could not be pooled due to the lack of data. Overall survival was similar between hypofractionated and conventional radiotherapy in the subset of two trials (293 participants) which included participants aged 60 years and older with glioblastoma. For this category, the HR was 1.16 (95% CI 0.92 to 1.46; P = 0.21; high-certainty evidence). There were two trials which compared hyperfractionated radiotherapy versus conventional radiation and one trial which compared accelerated radiotherapy versus conventional radiation. However, the results could not be pooled. The conventionally fractionated radiotherapy regimens were 4500 cGy to 6000 cGy given in 180 cGy to 200 cGy daily fractions, over five to six weeks. All trials generally included participants with World Health Organization (WHO) performance status from 0 to 2 and Karnofsky performance status of 50 and higher. The risk of selection bias was generally low among these RCTs. The number of participants lost to follow-up for the outcome of overall survival was low. Attrition, performance, detection and reporting bias for the outcome of overall survival was low. There was unclear attrition, performance, detection and reporting bias relating to the outcomes of adverse effects, progression free survival and quality of life. Postoperative conventional daily radiotherapy probably improves survival for adults with good performance status and HGG compared to no postoperative radiotherapy. Hypofractionated radiotherapy has similar efficacy for survival compared to conventional radiotherapy, particularly for individuals aged 60 years and older with glioblastoma. There are insufficient data regarding hyperfractionation versus conventionally fractionated radiation (without chemotherapy) and for accelerated radiation versus conventionally fractionated radiation (without chemotherapy). There are HGG subsets who have poor prognosis even with treatment (e.g. glioblastoma histology, older age and poor performance status). These HGG individuals with poor prognosis have generally been excluded from randomised trials based on poor performance status. No randomised trial has compared comfort measures or best supportive care with an active intervention using radiotherapy or chemotherapy in these people with poor prognosis. Since the last version of this review, we found no new relevant studies. The search identified three new trials, but all were excluded as none had a conventionally fractionated radiotherapy arm.

收起

展开

DOI:

10.1002/14651858.CD011475.pub3

被引量:

11

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(169)

参考文献(56)

引证文献(11)

来源期刊

Cochrane Database of Systematic Reviews

影响因子:11.996

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读