-
Traditional uses, botany, phytochemistry, pharmacology, separation and analysis technologies of Euonymus alatus (Thunb.) Siebold: A comprehensive review.
Euonymus alatus (Thunb.) Siebold (E. alatus), a well-known medicinal plant, has been widely used thousands of years in China for the treatment of various diseases such as urticaria, dysmenorrhea, wound, dysentery, blood stasis, rheumatism and arthritis. Due to the extensive application of E. alatus in the fields of ethnopharmacological usage, the pharmaceutical researches of E. alatus keeps deepening.
This paper reviewed and summarized the integrated research progress of this medicinal plant. A comprehensive summary and comparison of traditional usages, botany, phytochemistry, pharmacology, toxicology, separation and analysis technologies of the E. alatus highlight recent scientific advances, which provides new insights into the research and development of this medicinal plant and would be helpful to promote the research situation of underlying pharmacological mechanisms and further utilizations of E. alatus.
Literature survey was carried out via classic books of herbal medicine, PhD. and MSc. Dissertations. Online scientific databases including Pubmed, SciFinder, Science Direct, Scopus, the Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI) and others were searched up to February 2020 to identify eligible studies. All literatures of the research subject are analyzed and summarized in this review.
The E. alatus has been widely used in traditional practice in China, Korea and other Asian Countries. In the study of phytochemistry, more than 230 chemical constituents have been isolated and identified from E. alatus, including sesquiterpenoids, diterpenoids, triterpenoids, flavonoids, phenylpropanoids, lignans, steroids, alkaloids and other compounds. Among them, literature reports show that flavonoids and steroids are the most important bioactive substances found in this plant. A number of researches also have shown that extracts and compounds from E. alatus exert a wide spectrum of pharmacological effects, including antidiabetic effect, anti-tumor effects, anti-inflammatory effects, hepatoprotective effects, antioxidant effects, antibacterial effects, as well as other effects. However, most of the studies without clinical research. Research into plant's toxicological effects has also been limited. In addition, this review also summarizes and compares the separation and analysis technologies of E. alatus.
E. alatus has potential for the treatment of many diseases, especially tumors and diabetes. But many traditional uses of E. alatus have not been validated by current investigations. Additionally, modern studies haven't gone far enough into its pharmacological effects and the corresponding chemical constituents, more efforts should be made to illuminate the underlying mechanisms of E. alatus for treatment of tumors and diabetes. Moreover, the toxicological effects of this plant can be further studied. Currently, there are limited studies on its side effects and toxicological effects, which should provide further guidance for the safety of clinical use.
Fan L
,Zhang C
,Ai L
,Wang L
,Li L
,Fan W
,Li R
,He L
,Wu C
,Huang Y
... -
《-》
-
A review of the botany, traditional uses, phytochemistry, and pharmacology of the Flos Inulae.
Plants of the genus Inula have long been used as an ethnomedicine in Asia, Europe, and North America for its high medicinal value and health benefits. Inula japonica Thunb. (I. japonica) and Inula britanica L. (I. britanica) are included in Chinese Pharmacopoeia (2020 edition) as the traditional Chinese medicine Flos inulae (FI). In TCM, FI tastes bitter, pungent, and salt, with warm nature and has the functions of water removal, reduction in nausea, and prevention of vomiting and is often used for cold-related coughs, sputum, wheezing coughs, vomiting, belching and other related diseases. In addition, Inula japonica Thunb is used as a botanical medicine in Korea and Inula britannica L. is also used as a traditional plant medicine in Iran.
This paper collects the relevant research literature (1970-2021) and provides a systematic summary of the botany, ethnopharmacology, processing, phytochemistry, pharmacology, toxicity, analytical methods and quality control of FI to explore its potential and expand its scope for better clinical application.
Information on Inula japonica Thunb. and Inula britanica L. was collected from scientific databases (1970-2021), including Google Scholar, Baidu Scholar, Springer, PubMed, CNKI and Wan Fang DATA. Information was also collected from classic books of Chinese herbal medicine and Ph.D. and M.Sc. theses.
More than 200 chemical compounds have been isolated from Inula japonica Thunb. and Inula britanica L., including sesquiterpenes, flavonoids, volatile oils, triterpenoids, diterpenoid glycosides, monoterpenoids, polysaccharides, steroid and small molecule acids. Based on a wide variety of chemically active ingredients, FI has a wide range of pharmacological effects. Modern pharmacological research has proven that the pharmacological effects of FI include anti-inflammatory, antitumor, antioxidant, antiallergy, antidiabetic, blood lipid reduction, skin whitening, liver protection, anticonstipation, and antinociceptive effects.
FI is a very important traditional Chinese herbal medicine with anti-inflammatory antitumor, antioxidant, antiallergy, antidiabetic and other pharmacological effects that can treat a variety of related diseases. This paper summarizes the botany, ethnopharmacology, processing, phytochemistry, pharmacology, toxicity, analytical methods, and quality control of FI. However, the research on the processing, toxicity and quality control of FI is currently too shallow, especially concerning the relationship between the changes in active components before and after processing and the changes in its pharmacological action, which remains unclear. There are few toxicity experiments conducted with FI, so it is impossible to evaluate the safety of FI objectively and impartially. There are also few studies on the material basis and doses of FI causing toxicity and side effects, and more in-depth and concrete researches should be carried out in the future regarding these aspects. Furthermore, to ensure effective and safe clinical medication, we should also pay attention to the mixed use of FI in various regions of China to control the quality of the FI plant.
Yang L
,Wang X
,Hou A
,Zhang J
,Wang S
,Man W
,Yu H
,Zheng S
,Wang Q
,Jiang H
,Kuang H
... -
《-》
-
Phytochemistry and pharmacology of the genus Drypetes: A review.
Traditional medicinal use of species of the genus Drypetes is widespread in the tropical regions. The aim of this review is to systematically appraise the literature available to date on phytochemistry, ethnopharmacology, toxicology and bioactivity (in vitro and in vivo) of crude extracts and purified compounds.
Plants of the genus Drypetes (Putranjivaceae) are used in the Subsaharan African and Asian traditional medicines to treat a multitude of disorders, like dysentery, gonorrhoea, malaria, rheumatism, sinusitis, tumours, as well as for the treatment of wounds, headache, urethral problems, fever in young children, typhoid and several other ailments. Some Drypetes species are used to protect food against pests, as an aphrodisiac, a stimulant/depressant, a rodenticide and a fish poison, against insect bites, to induce conception and for general healing. This review deals with updated information on the ethnobotany, phytochemistry, and biological activities of ethnomedicinally important Drypetes species, in order to provide an input for the future research opportunities.
An extensive review of the literature available in various recognized databases e.g., Google Scholar, PubMed, Science Direct, SciFinder, Web of Science, www.theplantlist.org and www.gbif.org, as well as the Herbier National du Cameroun (Yaoundé) and Botanic Gardens of Limbe databases on the uses and bioactivity of various species of the Drypetes was undertaken.
The literature provided information on ethnopharmacological uses of the Subsaharan African and Asian species of the genus Drypetes, e.g., Drypetes aubrévillii, D. capillipes, D. chevalieri, D. gerrardii, D. gossweileri, D. ivorensis, D. klainei, D. natalensis, D. pellegrini (all endemic to Africa) and D. roxburghii (Asian species), for the treatment of multiple disorders. From a total of 19 species, more than 140 compounds including diterpenes, sesquiterpenes, triterpenes (friedelane, oleanane, lupane and hopane-type), flavonoids, lignans, phenylpropanoids and steroids, as well as some thiocyanates, were isolated. Several crude extracts of these plants, and isolated compounds displayed significant analgesic, anthelmintic, antidiabetic, anti-emetic anti-inflammatory, antioxidant, antiparasitic, central nervous system depressant, cytotoxic, and insecticidal activities both in vitro and in vivo. Some toxicities associated with the stem, bark, seed and leaf extracts of D. roxburghii, and the flavonoid, amentoflavone, isolated from the stem extract of D. littoralis as well as D. gerrardii, were confirmed in the animal models and in the rat skeletal myoblast cells assays. As a consequence, traditional medicine from this genus should in future be applied with care.
Plants of this genus have offered bioactive samples, both from crude extracts and pure compounds, partly validating their effectivity in traditional medicine. However, most of the available scientific literatures lacks information on relevant doses, duration of the treatment, storage conditions and positive controls for examining bioefficacy of extract and its active compounds. Additional toxicological studies on the species used in local pharmacopeia are urgently needed to guarantee safe application due to high toxicity of some crude extracts. Interestingly, this review also reports 10 pimarane dinorditerpenoids structures with the aromatic ring C, isolated from the species collected in Asia Drypetes littoralis (Taiwan), D. perreticulata (China), and in Africa D. gerrardii (Kenya), D. gossweileri (Cameroon). These compounds might turn out to be good candidates for chemotaxonomic markers of the genus.
Wansi JD
,Wandji J
,Sewald N
,Nahar L
,Martin C
,Sarker SD
... -
《-》
-
Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis.
Angelica sinensis (Oliv.) Diels, known as Dang Gui (in Chinese), is a traditional medicinal and edible plant that has long been used for tonifying, replenishing, and invigorating blood as well as relieving pain, lubricating the intestines, and treating female irregular menstruation and amenorrhea. A. sinensis has also been used as a health product and become increasingly popular in China, Japan, and Korea.
This paper aims to provide a systemic review of traditional uses of A. sinensis and its recent advances in the fields of phytochemistry, analytical methods and toxicology. In addition, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed.
An extensive review of the literature was conducted, and electronic databases including China National Knowledge Infrastructure, PubMed, Google Scholar, Science Direct, and Reaxys were used to assemble the data. Ethnopharmacological literature and digitalised sources of academic libraries were also systematically searched. In addition, information was obtained from local books and The Plant List (TPL, www.theplantlist.org).
This study reviews the progress in chemical analysis of A. sinensis and its preparations. Previously and newly established methods, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography(UPLC), and nuclear magnetic resonance analysis (NMR), are summarized. Moreover, identified bioactive components such as polysaccharides, ligustilide and ferulic acid were reviewed, along with analytical methods for quantitative and qualitative determination of target analytes, and fingerprinting authentication, quality evaluation of A. sinensis, and toxicology and pharmacodynamic studies. Scientific reports on crude extracts and pure compounds and formulations revealed a wide range of pharmacological activities, including anti-inflammatory activity, antifibrotic action, antispasmodic activity, antioxidant activities, and neuroprotective action, as well as cardio- and cerebrovascular effects.
Within the published scientific literature are numerous reports regarding analytical methods that use various chromatographic and spectrophotometric technologies to monitor various types of components with different physicochemical properties simultaneously. This review discusses the reasonable selection of marker compounds based on high concentrations, analytical methods, and commercial availabilities with the goal of developing quick, accurate, and applicable analytical approaches for quality evaluation and establishing harmonised criteria for the analysis of A. sinensis and its finished products. Compounds isolated from A. sinensis are abundant sources of chemical diversity, from which we can discover active molecules. Thus, more studies on the pharmacological mechanisms of the predominant active compounds of A. sinensis are needed. In addition, given that A. sinensis is one of the most popular traditional herbal medicines, its main therapeutic aspects, toxicity, and adverse effects warrant further investigation in the future.
Wei WL
,Zeng R
,Gu CM
,Qu Y
,Huang LF
... -
《-》
-
Local and traditional uses, phytochemistry, and pharmacology of Sophora japonica L.: A review.
Sophora japonica (Fabaceae), also known as Huai (Chinese: ), is a medium-sized deciduous tree commonly found in China, Japan, Korea, Vietnam, and other countries. The use of this plant has been recorded in classical medicinal treatises of ancient China, and it is currently recorded in both the Chinese Pharmacopoeia and European Pharmacopoeia. The flower buds and fruits of S. japonica, also known as Flos Sophorae Immaturus and Fructus Sophorae in China, are most commonly used in Asia (especially in China) to treat hemorrhoids, hematochezia, hematuria, hematemesis, hemorrhinia, uterine or intestinal hemorrhage, arteriosclerosis, headache, hypertension, dysentery, dizziness, and pyoderma. To discuss feasible trends for further research on S. japonica, this review highlights the botany, ethnopharmacology, phytochemistry, biological activities, and toxicology of S. japonica based on studies published in the last six decades.
Information on the S. japonica was collected from major scientific databases (SciFinder, PubMed, Elsevier, SpringerLink, Web of Science, Google Scholar, Medline Plus, China Knowledge Resource Integrated (CNKI), and "Da Yi Yi Xue Sou Suo (http://www.dayi100.com/login.jsp)" for publications between 1957 and 2015 on S. japonica. Information was also obtained from local classic herbal literature, government reports, conference papers, as well as PhD and MSc dissertations.
Approximately 153 chemical compounds, including flavonoids, isoflavonoids, triterpenes, alkaloids, polysaccharides, amino acids, and other compounds, have been isolated from the leaves, branches, flowers, buds, pericarps, and/or fruits of S. japonica. Among these compounds, several flavonoids and isoflavonoids comprise the active constituents of S. japonica, which exhibit a wide range of biological activities in vitro and in vivo such as anti-inflammatory, antibacterial, antiviral, anti-osteoporotic, antioxidant, radical scavenging, antihyperglycemic, antiobesity, antitumor, and hemostatic effects. Furthermore, flavonoids and isoflavonoids can be used as quality control markers for quality identification and evaluation of medicinal materials and their preparations. Information on evaluating the safety of S. japonica is very limited, so further study is required. To enable safer, more effective, and controllable therapeutic preparations, more in-depth information is urgently needed on the quality control, toxicology data, and clinical value of crude extract and active compounds of S. japonica.
S. japonica has long been used in traditional Chinese medicine (TCM) due to its wide range of biological activities, and is administered orally. Phytochemical and pharmacological studies of S. japonica have increased in the past few years, and the extract and active components of this plant can be used to develop new drugs based on their traditional application as well as their biological activities. Therefore, this review on the ethnopharmacology, phytochemistry, biological activities, and toxicity of S. japonica offers promising data for further studies as well as the commercial exploitation of this traditional medicine.
He X
,Bai Y
,Zhao Z
,Wang X
,Fang J
,Huang L
,Zeng M
,Zhang Q
,Zhang Y
,Zheng X
... -
《-》