Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation.
Rationale: Myocardial vulnerability to ischemia/reperfusion (I/R) injury is strictly regulated by energy substrate metabolism. Branched chain amino acids (BCAA), consisting of valine, leucine and isoleucine, are a group of essential amino acids that are highly oxidized in the heart. Elevated levels of BCAA have been implicated in the development of cardiovascular diseases; however, the role of BCAA in I/R process is not fully understood. The present study aims to determine how BCAA influence myocardial energy substrate metabolism and to further clarify the pathophysiological significance during cardiac I/R injury. Methods: Parameters of glucose and fatty acid metabolism were measured by seahorse metabolic flux analyzer in adult mouse cardiac myocytes with or without BCAA incubation. Chronic accumulation of BCAA was induced in mice receiving oral BCAA administration. A genetic mouse model with defective BCAA catabolism was also utilized. Mice were subjected to MI/R and the injury was assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. Results: We confirmed that chronic accumulation of BCAA enhanced glycolysis and fatty acid oxidation (FAO) but suppressed glucose oxidation in adult mouse ventricular cardiomyocytes. Oral gavage of BCAA enhanced FAO in cardiac tissues, exacerbated lipid peroxidation toxicity and worsened myocardial vulnerability to I/R injury. Etomoxir, a specific inhibitor of FAO, rescued the deleterious effects of BCAA on I/R injury. Mechanistically, valine, leucine and their corresponding branched chain α-keto acid (BCKA) derivatives, but not isoleucine and its BCKA derivative, transcriptionally upregulated peroxisome proliferation-activated receptor alpha (PPAR-α). BCAA/BCKA induced PPAR-α upregulation through the general control nonderepresible-2 (GCN2)/ activating transcription factor-6 (ATF6) pathway. Finally, in a genetic mouse model with BCAA catabolic defects, chronic accumulation of BCAA increased FAO in myocardial tissues and sensitized the heart to I/R injury, which could be reversed by adenovirus-mediated PPAR-α silencing. Conclusions: We identify BCAA as an important nutrition regulator of myocardial fatty acid metabolism through transcriptional upregulation of PPAR-α. Chronic accumulation of BCAA, caused by either dietary or genetic factors, renders the heart vulnerable to I/R injury via exacerbating lipid peroxidation toxicity. These data support the notion that BCAA lowering methods might be potentially effective cardioprotective strategies, especially among patients with diseases characterized by elevated levels of BCAA, such as obesity and diabetes.
Li Y
,Xiong Z
,Yan W
,Gao E
,Cheng H
,Wu G
,Liu Y
,Zhang L
,Li C
,Wang S
,Fan M
,Zhao H
,Zhang F
,Tao L
... -
《Theranostics》
Diabetes and branched-chain amino acids: What is the link?
Branched-chain amino acids (BCAA) have increasingly been studied as playing a role in diabetes, with the PubMed search string "diabetes" AND "branched chain amino acids" showing particular growth in studies of the topic over the past decade (Fig. ). In the Young Finn's Study, BCAA and, to a lesser extent, the aromatic amino acids phenylalanine and tyrosine were associated with insulin resistance (IR) in men but not in women, whereas the gluconeogenic amino acids alanine, glutamine, or glycine, and several other amino acids (i.e. histidine, arginine, and tryptophan) did not show an association with IR. Obesity may track more strongly than metabolic syndrome and diabetes with elevated BCAA. In a study of 1302 people aged 40-79; higher levels of BCAA tracked with older age, male sex, and metabolic syndrome, as well as with obesity, cardiovascular risk, dyslipidemia, hypertension, and uric acid. Medium- and long-chain acylcarnitines, by-products of mitochondrial catabolism of BCAAs, as well as branched-chain keto acids and the BCAA themselves distinguished obese people having versus not having features of IR, and in a study of 898 patients with essential hypertension, the BCAA and tyrosine and phenylalanine were associated with metabolic syndrome and impaired fasting glucose. In a meta-analysis of three genome-wide association studies, elevations in BCAA and, to a lesser extent, in alanine tracked with IR, whereas higher levels of glutamine and glycine were associated with lesser likelihood of IR. Given these associations with IR, it is not surprising that a number of studies have shown higher BCAA levels in people with and prior to development of type 2 diabetes (T2D), although this has particularly been shown in Caucasian and Asian ethnic groups while not appearing to occur in African Americans. Similarly, higher BCAA levels track with cardiovascular disease. [Figure: see text] The metabolism of BCAA involves two processes: (i) a reversible process catalysed by a branched-chain aminotransferase (BCAT), either cytosolic or mitochondrial, requiring pyridoxal to function as an amino group carrier, by which the BCAA with 2-ketoglutarate produce a branched-chain keto acid plus glutamate; and (ii) the irreversible mitochondrial process catalysed by branched-chain keto acid dehydrogenase (BCKDH) leading to formation of acetyl-coenzyme A (CoA), propionyl-CoA, and 2-methylbutyryl-CoA from leucine, valine, and isoleucine, respectively, which enter the tricarboxylic acid (Krebs) cycle as acetyl-CoA, propionyl-CoA, and 2-methylbutyryl-CoA, respectively, leading to ATP formation. The BCAA stimulate secretion of both insulin and glucagon and, when given orally, of both glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), with oral administration leading to greater and more prolonged insulin and glucagon secretion. Insulin may particularly reduce BCAA turnover to a greater extent than that of other amino acids, and decreases the appearance and increases the uptake of amino acids. However, older studies of the effect of glucose or insulin on BCAA concentrations and rates of leucine appearance and oxidation showed no reduction in T2D, although the higher baseline levels of BCAA in obesity have long been recognized. Impaired function of BCAT and BCKDH has been posited, either as a primary genetic abnormality or due to effects of elevated fatty acids, proinflammatory cytokines, or insulin levels with consequent accumulation of branched-chain keto acids and metabolites such as diacylglycerol and ceramide, potentially contributing to the development of further insulin resistance, and decreased skeletal muscle BCAT and BCKDH expression has been shown in people with diabetes, supporting this concept. A Mendelian randomization study used measured variation in genes involved in BCAA metabolism to test the hypothesis of a causal effect of modifiable exposure on IR, showing that variants in protein phosphatase, Mg2+ /Mn2+ dependent 1K (PPM1K), a gene encoding the mitochondrial phosphatase activating the BCKDH complex, are associated with T2D, but another such study suggested that genetic variations associated with IR are causally related to higher BCAA levels. Another hypothesis involves the mammalian target of rapamycin complex 1 (mTORC1), which is activated by BCAA, as well as by insulin and glucose via cellular ATP availability. If this is the relevant pathway, BCAA overload may cause insulin resistance by activation of mammalian target of rapamycin (mTOR), as well as by leading to increases in acylcarnitines, with mTOR seen in this scenario as a central signal of cross-talk between the BCAA and insulin. At this point, whether whole-body or tissue-specific BCAA metabolism is increased or decreased in states of insulin-resistant obesity and T2D is uncertain. Insulin action in the hypothalamus induces but overfeeding decreases hepatic BCKDH, leading to the concept that hypothalamic insulin resistance impairs BCAA metabolism in obesity and diabetes, so that plasma BCAAs may be markers of hypothalamic insulin action rather than direct mediators of changes in IR. A way to address this may be to understand the effects of changes in diet and other interventions on BCAA, as well as on IR and T2D. In an animal model, lowering dietary BCAA increased energy expenditure and improved insulin sensitivity. Two large human population studies showed an association of estimated dietary BCAA intake with T2D risk, although another population study showed higher dietary BCAA to be associated with lower T2D risk. Ethnic differences, reflecting underlying differences in genetic variants, may be responsible for such differences. In the study of Asghari et al. in the current issue of the Journal of Diabetes, BCAA intake was associated with the development of subsequent IR. Studies of bariatric surgery suggest lower basal and post-insulin infusion BCAA levels are associated with greater insulin sensitivity, with reductions in BCAA not seen with weight loss per se with gastric band procedures, but occurring after Roux-en-Y gastric bypass, an intervention that may have metabolic benefits over and above those from reduction in body weight. The gut microbiota may be important for the supply of the BCAA to mammalian hosts, either by de novo biosynthesis or by modifying nutrient absorption. A final fascinating preliminary set of observations is that of the effects of empagliflozin on metabolomics; evidence of increased Krebs cycle activation and of higher levels of BCAA metabolites, such as acylcarnitines, suggests that sodium-glucose cotransporter 2 (SGLT2) inhibition may, to some extent, involve BCAA metabolism. Certainly, we do not yet have a full understanding of these complex associations. However, the suggestion of multiple roles of BCAA in the development of IR promises to be important and to lead to the development of novel effective T2D therapies.
Bloomgarden Z
《-》
Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.
Cardiac metabolic remodeling is a central event during heart failure (HF) development following myocardial infarction (MI). It is well known that myocardial glucose and fatty acid dysmetabolism contribute to post-MI cardiac dysfunction and remodeling. However, the role of amino acid metabolism in post-MI HF remains elusive. Branched chain amino acids (BCAAs) are an important group of essential amino acids and function as crucial nutrient signaling in mammalian animals. The present study aimed to determine the role of cardiac BCAA metabolism in post-MI HF progression. Utilizing coronary artery ligation-induced murine MI models, we found that myocardial BCAA catabolism was significantly impaired in response to permanent MI, therefore leading to an obvious elevation of myocardial BCAA abundance. In MI-operated mice, oral BCAA administration further increased cardiac BCAA levels, activated the mammalian target of rapamycin (mTOR) signaling, and exacerbated cardiac dysfunction and remodeling. These data demonstrate that BCAAs act as a direct contributor to post-MI cardiac pathologies. Furthermore, these BCAA-mediated deleterious effects were improved by rapamycin cotreatment, revealing an indispensable role of mTOR in BCAA-mediated adverse effects on cardiac function/structure post-MI. Of note, pharmacological inhibition of branched chain ketoacid dehydrogenase kinase (BDK), a negative regulator of myocardial BCAA catabolism, significantly improved cardiac BCAA catabolic disorders, reduced myocardial BCAA levels, and ameliorated post-MI cardiac dysfunction and remodeling. In conclusion, our data provide the evidence that impaired cardiac BCAA catabolism directly contributes to post-MI cardiac dysfunction and remodeling. Moreover, improving cardiac BCAA catabolic defects may be a promising therapeutic strategy against post-MI HF.
Wang W
,Zhang F
,Xia Y
,Zhao S
,Yan W
,Wang H
,Lee Y
,Li C
,Zhang L
,Lian K
,Gao E
,Cheng H
,Tao L
... -
《-》