-
Comprehensive validation of halcyon 2.0 plans and the implementation of patient specific QA with multiple detector platforms.
To perform a comprehensive validation of plans generated on a preconfigured Halcyon 2.0 with preloaded beam model, including evaluations of new features and implementing the patient specific quality assurance (PSQA) process with multiple detectors.
A total of 56 plans were generated in Eclipse V15.6 (Varian Medical System) with a preconfigured Halcyon treatment machine. Ten plans were developed via the AAPM TG-119 test suite with both IMRT and VMAT techniques. 34 clinically treated plans using C-arm LINAC from 24 patients were replanned on Halcyon using IMRT or VMAT techniques for a variety of sites including: brain, head and neck, lung, breast, abdomen, and pelvis. Six of those plans were breast VMAT plans utilizing the extended treatment field technique available with Halcyon 2.0. The dynamically flattened beam (DFB), another new feature on Halcyon 2.0, was also used for an AP/PA spine and four field box pelvis, as well as ten 3D breast plans. All 56 plans were measured with an ion chamber (IC), film, portal dosimetry (PD), ArcCHECK, and Delta4. Tolerance and action limits were calculated and compared to the recommendations of TG-218.
TG-119 IC and film confidence limits met those set by the task group, except for IMRT target point dose. Forty-four of 46 clinical plans were within 3% for IC measurements. Average gamma passing rates with 3% dose difference and 2mm distance-to-agreement for IMRT/VMAT plans were: Film - 96.8%, PD - 99.9%, ArcCHECK - 99.1%, and Delta4 - 99.2%. Calculated action limits were: Film - 86.3%, PD - 98.4%, ArcCHECK - 96.1%, and Delta4 - 95.7%. Extended treatment field technique was fully validated and 3D plans with DFB had similar results to IMRT/VMAT plans.
Halcyon plan deliveries were verified with multiple measurement devices. New features of Halcyon 2.0 were also validated. Traditional PSQA techniques and process specific tolerance and action limits were successfully implemented.
Laugeman E
,Heermann A
,Hilliard J
,Watts M
,Roberson M
,Morris R
,Goddu S
,Sethi A
,Zoberi I
,Kim H
,Mutic S
,Hugo G
,Cai B
... -
《Journal of Applied Clinical Medical Physics》
-
Validation and IMRT/VMAT delivery quality of a preconfigured fast-rotating O-ring linac system.
A fast-rotating O-ring dedicated intensity modulated radiotherapy (IMRT)/volumetric modulated arc therapy (VMAT) delivery system, the Halcyon, is delivered by default with a fully preconfigured photon beam model in the treatment planning system (TPS). This work reports on the validation and achieved IMRT/VMAT delivery quality on the system.
Acceptance testing followed the vendor's installation product acceptance and was supplemented with mechanical QA. The dosimetric calibration was performed according to the IAEA TRS-398 code-of-practice, delivering 600 cGy/min at 10 cm depth, a 90 cm source-surface distance, and a 10 × 10 cm² field size. The output factors, multileaf collimator (MLC) transmission and dosimetric leaf gap (DLG) were validated by comparing measurements with the modeled values in the TPS. Validation of IMRT/VMAT was conducted following AAPM reports (MPPG 5.a, TG-119). Next, dose measurements were performed for end-to-end (E2E) checks in heterogeneous anthropomorphic phantoms using radiochromic film in multiple planes and using ionization chambers (IC) point measurements. E2E checks were performed for VMAT (cranial, rectum, spine, and head and neck) and IMRT (lung). Additionally, IROC Houston mailed dosimetry audits were performed for the beam calibration and E2E measurements using a thorax phantom (IMRT) and a head and neck phantom (VMAT). Lastly, extensive patient-specific QA was performed for the first patients of each new indication, 26 in total (nrectum = 2, nspine = 5, nlung = 5, nesophagus = 2, nhead and neck = 7, ncranial = 5), treated on the fast-rotating O-ring linac. The patient-specific QA followed the AAPM TG-218 guidelines and comprised of portal dosimetry, ArcCHECK diode array, radiochromic film dosimetry in a MultiCube phantom, and IC point measurements.
The measured output factors showed an agreement <1% for fields ≥3 × 3 cm². Field sizes ≤2 × 2 cm² had a difference of <2%. The measured single-layer MLC transmission was 0.42 ± 0.01% and the measured DLG was 0.27 ± 0.22 mm. The AAPM MPPG 5.a measurements were fully compliant with the guideline criteria. Dose differences larger than 2% were found for the PDD at large depths (>25 cm). TG-119's confidence limits were achieved for the VMAT point dose measurements and for both the IMRT and VMAT radiochromic film measurements. The TG-119 confidence limits were not achieved for IMRT point dose measurements in both the target (5.9%) and the avoidance structure (6.4%). All E2E tests had point differences below 2.3% and gamma agreement scores above 90.6%. The IROC beam calibration audit showed agreement of <1%. The IROC lung IMRT audit and head and neck VMAT audit had results compliant with the IROC Houston's credentialing criteria. All IMRT and VMAT plans selected for patient-specific QA were within the action limits suggested by TG-218.
The fast-rotating O-ring linac and its preconfigured TPS are compliant with the international commissioning criteria of AAPM MPPG 5.a and AAPM TG-119. E2E measurements on heterogeneous anthropomorphic phantoms were within clinically acceptable tolerances. IROC Houston's audits satisfied the credentialing criteria. This work comprises the first extensive dataset reporting on the preconfigured fast-rotating O-ring linac.
De Roover R
,Crijns W
,Poels K
,Michiels S
,Nulens A
,Vanstraelen B
,Petillion S
,De Brabandere M
,Haustermans K
,Depuydt T
... -
《-》
-
Interplay effect on a 6-MV flattening-filter-free linear accelerator with high dose rate and fast multi-leaf collimator motion treating breast and lung phantoms.
Using a new linear accelerator with high dose rate (800 MU/min), fast MLC motions (5.0 cm/s), fast gantry rotation (15 s/rotation), and 1 cm wide MLCs, we aimed to quantify the effects of complexity, arc number, and fractionation on interplay for breast and lung treatments under target motion.
To study lung interplay, eight VMAT plans (1-6 arcs) and four-nine-field sliding-window IMRT plans varying in complexity were created. For the breast plans, four-four-field sliding-window IMRT plans were created. Using the Halcyon 1.0 linear accelerator, each plan was delivered five times each under sinusoidal breathing motion to a phantom with 20 implanted MOSFET detectors; MOSFET dose (cGy), delivery time, and MU/cGy values were recorded. Maximum and mean dose deviations were calculated from MOSFET data. The number of MOSFETs with at least 19 of 20 detectors agreeing with their expected dose within 5% per fraction was calculated across 106 iterations to model dose deviation as function of fraction number for all plan variants. To put interplay plans into clinical context, additional IMRT and VMAT plans were created and delivered for the sites of head and neck, prostate, whole brain, breast, pelvis, and lung. Average modulation and interplay effect were compared to those from conventional linear accelerators, as reported from previous studies.
The mean beam modulation for plans created for the Halcyon 1.0 linear accelerator was 2.9 MU/cGy (two- to four-field IMRT breast plans), 6.2 MU/cGy (at least five-field IMRT), and 3.6 MU/cGy (four-arc VMAT). To achieve treatment plan objectives, Halcyon 1.0 VMAT plans require more arcs and modulation than VMAT on conventional linear accelerators. Maximum and mean dose deviations increased with increasing plan complexity under tumor motion for breast and lung treatments. Concerning VMAT plans under motion, maximum, and mean dose deviations were higher for one arc than for two arcs regardless of plan complexity. For plan variants with maximum dose deviations greater than 3.7%, dose deviation as a function of fraction number was protracted.
For treatments on the Halcyon 1.0 linear accelerator, the convergence of dose deviation with fraction number happened more slowly than reported for conventional linear accelerators. However, if plan complexity is reduced for IMRT and if tumor motion is less than ~10-mm, interplay is greatly reduced. To minimize dose deviations across multiple fractions for dynamic targets, we recommend limiting treatment plan complexity and avoiding one-arc VMAT on the Halcyon 1.0 linear accelerator when interplay is a concern.
Netherton T
,Li Y
,Nitsch P
,Shaitelman S
,Balter P
,Gao S
,Klopp A
,Muruganandham M
,Court L
... -
《-》
-
Comparison of sliding window and field-in-field techniques for tangential whole breast irradiation using the Halcyon and Synergy Agility systems.
To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans.
For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom.
The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3%/2 mm) with 100% points passing and ArcCheck QA (3%/2 mm) with 99.5%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans.
For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system.
Richter A
,Wegener S
,Breuer K
,Razinskas G
,Weick S
,Exner F
,Bratengeier K
,Flentje M
,Sauer O
,Polat B
... -
《Radiation Oncology》
-
Initial clinical experience with ArcCHECK for IMRT/VMAT QA.
Many devices designed for the purpose of performing patient-specific IMRT/VMAT QA are commercially available. In this work we report our experience and initial clinical results with the ArcCHECK. The ArcCHECK consists of a cylindrical array of diode detectors measuring entry and exit doses. The measured result is a cumulative dose displayed as a 2D matrix. The detector array requires both an absolute dose calibration, and a calibration of the detector response, relative to each other. In addition to the calibrations suggested by the manufacturer, various tests were performed in order to assess its stability and performance prior to clinical introduction. Tests of uniformity, linearity, and repetition rate dependence of the detector response were conducted and described in this work. Following initial test-ing, the ArcCHECK device was introduced in the clinic for routine patient-specific IMRT QA. The clinical results from one year of use were collected and analyzed. The gamma pass rates at the 3%/3 mm criterion were reported for 3,116 cases that included both IMRT and VMAT treatment plans delivered on 18 linear accelera-tors. The gamma pass rates were categorized based on the treatment site, treatment technique, type of MLCs, operator, ArcCHECK device, and LINAC model. We recorded the percent of failures at the clinically acceptable threshold of 90%. In addition, we calculated the threshold that encompasses two standard deviations (2 SD) (95%) of QAs (T95) for each category investigated. The commissioning measurements demonstrated that the device performed as expected. The uniformity of the detector response to a constant field arc delivery showed a 1% standard deviation from the mean. The variation in dose with changing repetition rate was within 1 cGy of the mean, while the measured dose showed a linear relation with delivered MUs. Our initial patient QA results showed that, at the clinically selected passing criterion, 4.5% of cases failed. On average T95 was 91%, rang-ing from 73% for gynecological sites to 96.5% for central nervous system sites. There are statistically significant differences in passing rates between IMRT and VMAT, high-definition (HD) and non-HD MLCs, and different LINAC models (p-values << 0.001). An additional investigation into the failing QAs and a com-parison with ion-chamber measurements reveals that the differences observed in the passing rates between the different studied factors can be largely explained by the field size dependence of the device. Based on our initial experience with the ArcCHECK, our passing rates are, on average, consistent with values reported in the AAPM TG-119. However, the significant variations between QAs that were observed based on the size of the treatment fields may need to be corrected to improve the specificity and sensitivity of the device.
Aristophanous M
,Suh Y
,Chi PC
,Whittlesey LJ
,LaNeave S
,Martel MK
... -
《Journal of Applied Clinical Medical Physics》