-
Error detection using a convolutional neural network with dose difference maps in patient-specific quality assurance for volumetric modulated arc therapy.
The aim of this study was to evaluate the use of dose difference maps with a convolutional neural network (CNN) to detect multi-leaf collimator (MLC) positional errors in patient-specific quality assurance for volumetric modulated radiation therapy (VMAT). A cylindrical three-dimensional detector (Delta4, ScandiDos, Uppsala, Sweden) was used to measure 161 beams from 104 clinical prostate VMAT plans. For the simulation used error-free plans plus plans with two types of MLC error were introduced: systematic error and random error. A total of 483 dose distributions in a virtual cylindrical phantom were calculated with a treatment planning system. Dose difference maps were created from two planar dose distributions from the measured and calculated dose distributions, and these were used as the input for the CNN, with 375 datasets assigned for training and 108 datasets assigned for testing. The CNN model had three convolution layers and was trained with five-fold cross-validation. The CNN model classified the error types of the plans as "error-free," "systematic error," or "random error," with an overall accuracy of 0.944. The sensitivity values for the "error-free," "systematic error," and "random error" classifications were 0.889, 1.000, and 0.944, respectively, and the specificity values were 0.986, 0.986, and 0.944, respectively. This approach was superior to those based on gamma analysis. Using dose difference maps with a CNN model may provide an effective solution for detecting MLC errors for patient-specific VMAT quality assurance.
Kimura Y
,Kadoya N
,Tomori S
,Oku Y
,Jingu K
... -
《-》
-
Error detection model developed using a multi-task convolutional neural network in patient-specific quality assurance for volumetric-modulated arc therapy.
In patient-specific quality assurance (QA) for static beam intensity-modulated radiation therapy (IMRT), machine-learning-based dose analysis methods have been developed to identify the cause of an error as an alternative to gamma analysis. Although these new methods have revealed that the cause of the error can be identified by analyzing the dose distribution obtained from the two-dimensional detector, they have not been extended to the analysis of volumetric-modulated arc therapy (VMAT) QA. In this study, we propose a deep learning approach to detect various types of errors in patient-specific VMAT QA.
A total of 161 beams from 104 prostate VMAT plans were analyzed. All beams were measured using a cylindrical detector (Delta4; ScandiDos, Uppsala, Sweden), and predicted dose distributions in a cylindrical phantom were calculated using a treatment planning system (TPS). In addition to the error-free plan, we simulated 12 types of errors: two types of multileaf collimator positional errors (systematic or random leaf offset of 2 mm), two types of monitor unit (MU) scaling errors (±3%), two types of gantry rotation errors (±2° in clockwise and counterclockwise direction), and six types of phantom setup errors (±1 mm in lateral, longitudinal, and vertical directions). The error-introduced predicted dose distributions were created by editing the calculated dose distributions using a TPS with in-house software. Those 13 types of dose difference maps, consisting of an error-free map and 12 error maps, were created from the measured and predicted dose distributions and were used to train the convolutional neural network (CNN) model. Our model was a multi-task model that individually detected each of the 12 types of errors. Two datasets, Test sets 1 and 2, were prepared to evaluate the performance of the model. Test set 1 consisted of 13 types of dose maps used for training, whereas Test set 2 included the dose maps with 25 types of errors in addition to the error-free dose map. The dose map, which introduced 25 types of errors, was generated by combining two of the 12 types of simulated errors. For comparison with the performance of our model, gamma analysis was performed for Test sets 1 and 2 with the criteria set to 3%/2 mm and 2%/1 mm (dose difference/distance to agreement).
For Test set 1, the overall accuracy of our CNN model, gamma analysis with the criteria set to 3%/2 mm, and gamma analysis with the criteria set to 2%/1 mm was 0.92, 0.19, and 0.81, respectively. Similarly, for Test set 2, the overall accuracy was 0.44, 0.42, and 0.95, respectively. Our model outperformed gamma analysis in the classification of dose maps containing a single type error, and the performance of our model was inferior in the classification of dose maps containing compound errors.
A multi-task CNN model for detecting errors in patient-specific VMAT QA using a cylindrical measuring device was constructed, and its performance was evaluated. Our results demonstrate that our model was effective in identifying the error type in the dose map for VMAT QA.
Kimura Y
,Kadoya N
,Oku Y
,Kajikawa T
,Tomori S
,Jingu K
... -
《-》
-
Development of a deep learning-based error detection system without error dose maps in the patient-specific quality assurance of volumetric modulated arc therapy.
To detect errors in patient-specific quality assurance (QA) for volumetric modulated arc therapy (VMAT), we proposed an error detection method based on dose distribution analysis using unsupervised deep learning approach and analyzed 161 prostate VMAT beams measured with a cylindrical detector. For performing error simulation, in addition to error-free dose distribution, dose distributions containing nine types of error, including multileaf collimator (MLC) positional errors, gantry rotation errors, radiation output errors and phantom setup errors, were generated. Only error-free data were employed for the model training, and error-free and error data were employed for the tests. As a deep learning model, the variational autoencoder (VAE) was adopted. The anomaly of test data was quantified by calculating Mahalanobis distance based on the feature vectors acquired from a trained encoder. Based on this anomaly, test data were classified as 'error-free' or 'any-error.' For comparison with conventional approaches, gamma (γ)-analysis was performed, and supervised learning convolutional neural network (S-CNN) was constructed. Receiver operating characteristic curves were obtained to evaluate their performance with the area under the curve (AUC). For all error types, except systematic MLC positional and radiation output errors, the performance of the methods was in the order of S-CNN ˃ VAE-based ˃ γ-analysis (only S-CNN required error data for model training). For example, in random MLC positional error simulation, the AUC of our method, S-CNN and γ-analysis were 0.699, 0.921 and 0.669, respectively. Our results showed that the VAE-based method has the potential to detect errors in patient-specific VMAT QA.
Kimura Y
,Kadoya N
,Oku Y
,Jingu K
... -
《-》
-
Error detection and classification in patient-specific IMRT QA with dual neural networks.
Despite being the standard metric in patient-specific quality assurance (QA) for intensity-modulated radiotherapy (IMRT), gamma analysis has two shortcomings: (a) it lacks sensitivity to small but clinically relevant errors (b) it does not provide efficient means to classify the error sources. The purpose of this work is to propose a dual neural network method to achieve simultaneous error detection and classification in patient-specific IMRT QA.
For a pair of dose distributions, we extracted the dose difference histogram (DDH) for the low dose gradient region and two signed distance-to-agreement (sDTA) maps (one in x direction and one in y direction) for the high dose gradient region. An artificial neural network (ANN) and a convolutional neural network (CNN) were designed to analyze the DDH and the two sDTA maps, respectively. The ANN was trained to detect and classify six classes of dosimetric errors: incorrect multileaf collimator (MLC) transmission (±1%) and four types of monitor unit (MU) scaling errors (±1% and ±2%). The CNN was trained to detect and classify seven classes of spatial errors: incorrect effective source size, 1 mm MLC leaf bank overtravel or undertravel, 2 mm single MLC leaf overtravel or undertravel, and device misalignment errors (1 mm in x- or y direction). An in-house planar dose calculation software was used to simulate measurements with errors and noise introduced. Both networks were trained and validated with 13 IMRT plans (totaling 88 fields). A fivefold cross-validation technique was used to evaluate their accuracy.
Distinct features were found in the DDH and the sDTA maps. The ANN perfectly identified all four types of MU scaling errors and the specific accuracies for the classes of no error, MLC transmission increase, MLC transmission decrease were 98.9%, 96.6%, and 94.3%, respectively. For the CNN, the largest confusion occurred between the 1-mm-MLC bank overtravel class and the 1-mm-device alignment error in x-direction class, which brought the specific accuracies down to 90.9% and 92.0%, respectively. The specific accuracy for the 2-mm-single MLC leaf undertravel class was 93.2% as it misclassified 5.7% of the class as being error free (false negative). Otherwise, the specific accuracy was above 95%. The overall accuracies across the fivefold were 98.3 ± 0.7% and 95.6% ± 1.5% for the ANN and the CNN, respectively.
Both the DDH and the sDTA maps are suitable features for error classification in IMRT QA. The proposed dual neural network method achieved simultaneous error detection and classification with excellent accuracy. It could be used in complement with the gamma analysis to potentially shift the IMRT QA paradigm from passive pass/fail analysis to active error detection and root cause identification.
Potter NJ
,Mund K
,Andreozzi JM
,Li JG
,Liu C
,Yan G
... -
《-》
-
Error detection using a multi-channel hybrid network with a low-resolution detector in patient-specific quality assurance.
This study aimed to develop a hybrid multi-channel network to detect multileaf collimator (MLC) positional errors using dose difference (DD) maps and gamma maps generated from low-resolution detectors in patient-specific quality assurance (QA) for Intensity Modulated Radiation Therapy (IMRT).
A total of 68 plans with 358 beams of IMRT were included in this study. The MLC leaf positions of all control points in the original IMRT plans were modified to simulate four types of errors: shift error, opening error, closing error, and random error. These modified plans were imported into the treatment planning system (TPS) to calculate the predicted dose, while the PTW seven29 phantom was utilized to obtain the measured dose distributions. Based on the measured and predicted dose, DD maps and gamma maps, both with and without errors, were generated, resulting in a dataset with 3222 samples. The network's performance was evaluated using various metrics, including accuracy, sensitivity, specificity, precision, F1-score, ROC curves, and normalized confusion matrix. Besides, other baseline methods, such as single-channel hybrid network, ResNet-18, and Swin-Transformer, were also evaluated as a comparison.
The experimental results showed that the multi-channel hybrid network outperformed other methods, demonstrating higher average precision, accuracy, sensitivity, specificity, and F1-scores, with values of 0.87, 0.89, 0.85, 0.97, and 0.85, respectively. The multi-channel hybrid network also achieved higher AUC values in the random errors (0.964) and the error-free (0.946) categories. Although the average accuracy of the multi-channel hybrid network was only marginally better than that of ResNet-18 and Swin Transformer, it significantly outperformed them regarding precision in the error-free category.
The proposed multi-channel hybrid network exhibits a high level of accuracy in identifying MLC errors using low-resolution detectors. The method offers an effective and reliable solution for promoting quality and safety of IMRT QA.
Yan B
,Shi J
,Xue X
,Peng H
,Wu A
,Wang X
,Ma C
... -
《Journal of Applied Clinical Medical Physics》