Error detection using a convolutional neural network with dose difference maps in patient-specific quality assurance for volumetric modulated arc therapy.

来自 PUBMED

作者:

Kimura YKadoya NTomori SOku YJingu K

展开

摘要:

The aim of this study was to evaluate the use of dose difference maps with a convolutional neural network (CNN) to detect multi-leaf collimator (MLC) positional errors in patient-specific quality assurance for volumetric modulated radiation therapy (VMAT). A cylindrical three-dimensional detector (Delta4, ScandiDos, Uppsala, Sweden) was used to measure 161 beams from 104 clinical prostate VMAT plans. For the simulation used error-free plans plus plans with two types of MLC error were introduced: systematic error and random error. A total of 483 dose distributions in a virtual cylindrical phantom were calculated with a treatment planning system. Dose difference maps were created from two planar dose distributions from the measured and calculated dose distributions, and these were used as the input for the CNN, with 375 datasets assigned for training and 108 datasets assigned for testing. The CNN model had three convolution layers and was trained with five-fold cross-validation. The CNN model classified the error types of the plans as "error-free," "systematic error," or "random error," with an overall accuracy of 0.944. The sensitivity values for the "error-free," "systematic error," and "random error" classifications were 0.889, 1.000, and 0.944, respectively, and the specificity values were 0.986, 0.986, and 0.944, respectively. This approach was superior to those based on gamma analysis. Using dose difference maps with a CNN model may provide an effective solution for detecting MLC errors for patient-specific VMAT quality assurance.

收起

展开

DOI:

10.1016/j.ejmp.2020.03.022

被引量:

18

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(161)

参考文献(0)

引证文献(18)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读