Generative adversarial networks with decoder-encoder output noises.

来自 PUBMED

作者:

Zhong GGao WLiu YYang YWang DHHuang K

展开

摘要:

In recent years, research on image generation has been developing very fast. The generative adversarial network (GAN) emerges as a promising framework, which uses adversarial training to improve the generative ability of its generator. However, since GAN and most of its variants use randomly sampled noises as the input of their generators, they have to learn a mapping function from a whole random distribution to the image manifold. As the structures of the random distribution and the image manifold are generally different, this results in GAN and its variants difficult to train and converge. In this paper, we propose a novel deep model called generative adversarial networks with decoder-encoder output noises (DE-GANs), which take advantage of both the adversarial training and the variational Bayesian inference to improve GAN and its variants on image generation performances. DE-GANs use a pre-trained decoder-encoder architecture to map the random noise vectors to informative ones and feed them to the generator of the adversarial networks. Since the decoder-encoder architecture is trained with the same data set as the generator, its output vectors, as the inputs of the generator, could carry the intrinsic distribution information of the training images, which greatly improves the learnability of the generator and the quality of the generated images. Extensive experiments demonstrate the effectiveness of the proposed model, DE-GANs.

收起

展开

DOI:

10.1016/j.neunet.2020.04.005

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1751)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读