In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs' cleavage by CRISPR/Cas13a system.

来自 PUBMED

作者:

Chen YJiang HWang THe DTian RCui ZTian XGao QMa XYang JWu JTan SXu HTang XWang YYu ZHan HDas BCSeverinov KHitzeroth IIDebata PRXu WFan WJin ZCao CYu MXie WHuang ZHu ZYou Z

展开

摘要:

Sustained infection of high-risk human papillomavirus (HR-HPVs), especially HPV16 and HPV18, is a major cause of cervical cancer. E6 and E7 oncoproteins, encoded by the HPV genome, are critical for transformation and maintenance of malignant phenotypes of cervical cancer. Here, we used an emerging programmable clustered regularly interspaced short palindromic repeat (CRISPR)/Cas13a system to cleave HPV 16/18 E6/E7 messenger RNAs (mRNAs). The results showed that customized CRISPR/Cas13a system effectively and specifically knocked down HPV 16/18 E6/E7 mRNAs, inducing growth inhibition and apoptosis in HPV16-positive SiHa and HPV18-positive HeLa Cell lines, but not in HPV-negative C33A cell line. Simultaneously, we detected downregulation of E6/E7 oncoproteins and upregulation of tumor suppressor P53 and RB proteins. In addition, we used subcutaneous xenograft tumor growth assays to find that the weight and volume of tumors in the SiHa-16E6CR1 group knocked down by the CRISPR/Cas13a system were significantly lower than those in the SiHa-VECTOR group lacking crRNA. Our study demonstrated that targeting HPV E6/E7 mRNAs by the CRISPR/Cas13a system may be a candidate therapeutic strategy for HPV-related cervical cancer.

收起

展开

DOI:

10.1016/j.antiviral.2020.104794

被引量:

22

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1093)

参考文献(0)

引证文献(22)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读