Detecting early gastric cancer: Comparison between the diagnostic ability of convolutional neural networks and endoscopists.
Detecting early gastric cancer is difficult, and it may even be overlooked by experienced endoscopists. Recently, artificial intelligence based on deep learning through convolutional neural networks (CNNs) has enabled significant advancements in the field of gastroenterology. However, it remains unclear whether a CNN can outperform endoscopists. In this study, we evaluated whether the performance of a CNN in detecting early gastric cancer is better than that of endoscopists.
The CNN was constructed using 13,584 endoscopic images from 2639 lesions of gastric cancer. Subsequently, its diagnostic ability was compared to that of 67 endoscopists using an independent test dataset (2940 images from 140 cases).
The average diagnostic time for analyzing 2940 test endoscopic images by the CNN and endoscopists were 45.5 ± 1.8 s and 173.0 ± 66.0 min, respectively. The sensitivity, specificity, and positive and negative predictive values for the CNN were 58.4%, 87.3%, 26.0%, and 96.5%, respectively. These values for the 67 endoscopists were 31.9%, 97.2%, 46.2%, and 94.9%, respectively. The CNN had a significantly higher sensitivity than the endoscopists (by 26.5%; 95% confidence interval, 14.9-32.5%).
The CNN detected more early gastric cancer cases in a shorter time than the endoscopists. The CNN needs further training to achieve higher diagnostic accuracy. However, a diagnostic support tool for gastric cancer using a CNN will be realized in the near future.
Ikenoyama Y
,Hirasawa T
,Ishioka M
,Namikawa K
,Yoshimizu S
,Horiuchi Y
,Ishiyama A
,Yoshio T
,Tsuchida T
,Takeuchi Y
,Shichijo S
,Katayama N
,Fujisaki J
,Tada T
... -
《-》
Diagnosis of gastric lesions through a deep convolutional neural network.
A deep convolutional neural network (CNN) was used to achieve fast and accurate artificial intelligence (AI)-assisted diagnosis of early gastric cancer (GC) and other gastric lesions based on endoscopic images.
A CNN-based diagnostic system based on a ResNet34 residual network structure and a DeepLabv3 structure was constructed and trained using 21,217 gastroendoscopic images of five gastric conditions, peptic ulcer (PU), early gastric cancer (EGC) and high-grade intraepithelial neoplasia (HGIN), advanced gastric cancer (AGC), gastric submucosal tumors (SMTs), and normal gastric mucosa without lesions. The trained CNN was evaluated using a test dataset of 1091 images. The accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the CNN were calculated. The CNN diagnosis was compared with those of 10 endoscopists with over 8 years of experience in endoscopic diagnosis.
The diagnostic specificity and PPV of the CNN were higher than that of the endoscopists for the EGC and HGIN images (specificity: 91.2% vs. 86.7%, by 4.5%, 95% CI 2.8-7.2%; PPV: 55.4% vs. 41.7%, by 13.7%, 95% CI 11.2-16.8%) and the diagnostic accuracy of the CNN was close to those of the endoscopists for the lesion-free, EGC and HGIN, PU, AGC, and SMTs images. The CNN had image recognition time of 42 s for all the test set images.
The constructed CNN system could be used as a rapid auxiliary diagnostic instrument to detect EGC and HGIN, as well as other gastric lesions, to reduce the workload of endoscopists.
Zhang L
,Zhang Y
,Wang L
,Wang J
,Liu Y
... -
《-》
Convolutional neural network-based system for endocytoscopic diagnosis of early gastric cancer.
Endocytoscopy (ECS) aids early gastric cancer (EGC) diagnosis by visualization of cells. However, it is difficult for non-experts to accurately diagnose EGC using ECS. In this study, we developed and evaluated a convolutional neural network (CNN)-based system for ECS-aided EGC diagnosis.
We constructed a CNN based on a residual neural network with a training dataset comprising 906 images from 61 EGC cases and 717 images from 65 noncancerous gastric mucosa (NGM) cases. To evaluate diagnostic ability, we used an independent test dataset comprising 313 images from 39 EGC cases and 235 images from 33 NGM cases. The test dataset was further evaluated by three endoscopists, and their findings were compared with CNN-based results.
The trained CNN required 7.0 s to analyze the test dataset. The area under the curve of the total ECS images was 0.93. The CNN produced 18 false positives from 7 NGM lesions and 74 false negatives from 28 EGC lesions. In the per-image analysis, the accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 83.2%, 76.4%, 92.3%, 93.0%, and 74.6%, respectively, with the CNN and 76.8%, 73.4%, 81.3%, 83.9%, and 69.6%, respectively, for the endoscopist-derived values. The CNN-based findings had significantly higher specificity than the findings determined by all endoscopists. In the per-lesion analysis, the accuracy, sensitivity, specificity, PPV, and NPV of the CNN-based findings were 86.1%, 82.1%, 90.9%, 91.4%, and 81.1%, respectively, and those of the results calculated by the endoscopists were 82.4%, 79.5%, 85.9%, 86.9%, and 78.0%, respectively.
Compared with three endoscopists, our CNN for ECS demonstrated higher specificity for EGC diagnosis. Using the CNN in ECS-based EGC diagnosis may improve the diagnostic performance of endoscopists.
Noda H
,Kaise M
,Higuchi K
,Koizumi E
,Yoshikata K
,Habu T
,Kirita K
,Onda T
,Omori J
,Akimoto T
,Goto O
,Iwakiri K
,Tada T
... -
《-》
Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging.
Magnifying endoscopy with narrow-band imaging (ME-NBI) has made a huge contribution to clinical practice. However, acquiring skill at ME-NBI diagnosis of early gastric cancer (EGC) requires considerable expertise and experience. Recently, artificial intelligence (AI), using deep learning and a convolutional neural network (CNN), has made remarkable progress in various medical fields. Here, we constructed an AI-assisted CNN computer-aided diagnosis (CAD) system, based on ME-NBI images, to diagnose EGC and evaluated the diagnostic accuracy of the AI-assisted CNN-CAD system.
The AI-assisted CNN-CAD system (ResNet50) was trained and validated on a dataset of 5574 ME-NBI images (3797 EGCs, 1777 non-cancerous mucosa and lesions). To evaluate the diagnostic accuracy, a separate test dataset of 2300 ME-NBI images (1430 EGCs, 870 non-cancerous mucosa and lesions) was assessed using the AI-assisted CNN-CAD system.
The AI-assisted CNN-CAD system required 60 s to analyze 2300 test images. The overall accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the CNN were 98.7%, 98%, 100%, 100%, and 96.8%, respectively. All misdiagnosed images of EGCs were of low-quality or of superficially depressed and intestinal-type intramucosal cancers that were difficult to distinguish from gastritis, even by experienced endoscopists.
The AI-assisted CNN-CAD system for ME-NBI diagnosis of EGC could process many stored ME-NBI images in a short period of time and had a high diagnostic ability. This system may have great potential for future application to real clinical settings, which could facilitate ME-NBI diagnosis of EGC in practice.
Ueyama H
,Kato Y
,Akazawa Y
,Yatagai N
,Komori H
,Takeda T
,Matsumoto K
,Ueda K
,Matsumoto K
,Hojo M
,Yao T
,Nagahara A
,Tada T
... -
《-》