-
Curcumol inhibits the expression of programmed cell death-ligand 1 through crosstalk between hypoxia-inducible factor-1α and STAT3 (T705) signaling pathways in hepatic cancer.
Curcuma wenyujin is a Chinese traditional herbal medicine that is commonly used as an anti-oxidant, anti-proliferative, and anti-tumorigenic agent. Curcumol is a representative index component for the quality control of the essential oil of Curcuma wenyujin, which is currently used as an anti-cancer drug, and is included in the State Pharmacopoeia Commission of the People's Republic of China (2005). However, the mechanisms of action and molecular functions of curcumol are not yet fully elucidated.
This study aimed to identify new effects of curcumol from the perspective of cancer immunotherapy.
The underlying mechanism of the inhibition of programmed cell death-ligand 1 (PD-L1) activation by curcumol was investigated in vitro via homology modeling, molecular docking experiments, luciferase reporter assays, MTT assays, RT-PCR, western blotting, and immunofluorescence assays. Changes in cellular proliferation, angiogenesis, and the tumor-killing activity of T-cells were analyzed via EdU labeling, colony formation, flow cytometry, wound-healing, Matrigel Transwell invasion, tube formation, and T-cell killing. The anti-tumor activity of curcumol was assessed in vivo in a murine xenograft model using Hep3B cells.
Curcumol reduced the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) via JAK1, JAK2, and Src pathways and inhibited hypoxia-inducible factor-1α (HIF-1α) protein synthesis via mTOR/p70S6K/eIF4E and MAPK pathways. Furthermore, we revealed crosstalk between STAT3 and HIF-1α pathways, which collaboratively regulated PD-L1 activation, and that curcumol played a role in this regulation. Curcumol inhibited cell proliferation, S-phase progression, tube formation, invasion, and metastasis by inhibiting PD-L1. In addition, curcumol restored the activity of cytotoxic T-cells and their capacity for tumor cell killing by inhibiting PD-L1. In vivo experiments confirmed that curcumol inhibited tumor growth in a xenograft model.
These results illustrated that curcumol inhibits the expression of PD-L1 through crosstalk between HIF-1α and p-STAT3 (T705) signaling pathways in hepatic cancer. Thus, curcumol might represent a promising lead compound for the development of new targeted anti-cancer therapeutics.
Zuo HX
,Jin Y
,Wang Z
,Li MY
,Zhang ZH
,Wang JY
,Xing Y
,Ri MH
,Jin CH
,Xu GH
,Piao LX
,Ma J
,Jin X
... -
《-》
-
Britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by targeting PD-L1 via abrogation of the crosstalk between Myc and HIF-1α in cancer.
Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which causes tumor cells to escape T cell killing, and promotes tumor cell survival, cell proliferation, migration, invasion, and angiogenesis. Britannin is a natural product with anticancer pharmacological effects.
In this work, we studied the anticancer potential of britannin and explored whether britannin mediated its effect by inhibiting the expression of PD-L1 in tumor cells.
In vitro, the mechanisms underlying the inhibition of PD-L1 expression by britannin were investigated by MTT assay, homology modeling and molecular docking, RT-PCR, western blotting, co-immunoprecipitation, and immunofluorescence. The changes in tumor killing activity, cell proliferation, cell cycle, migration, invasion, and angiogenesis were analyzed by T cell killing assays, EdU labeling, colony formation, flow cytometry, wound healing, matrigel transwell invasion, and tube formation, respectively. In vivo, the antitumor activity of britannin was evaluated in the HCT116 cell xenograft model.
Britannin reduced the expression of PD-L1 in tumor cells by inhibiting the synthesis of the PD-L1 protein but did not affect the degradation of the PD-L1 protein. Britannin also inhibited HIF-1α expression through the mTOR/P70S6K/4EBP1 pathway and Myc activation through the Ras/RAF/MEK/ERK pathway. Mechanistically, britannin inhibited the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. In addition, britannin could enhance the activity of cytotoxic T lymphocytes and inhibit tumor cell proliferation and angiogenesis by inhibiting PD-L1. Finally, in vivo observations were confirmed by demonstrating the antitumor activity of britannin in a murine xenograft model.
Britannin inhibits the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. Moreover, britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by inhibiting PD-L1 in cancer. The current work highlights the anti-tumor effect of britannin, providing insights into the development of cancer therapeutics via PD-L1 inhibition.
Zhang YF
,Zhang ZH
,Li MY
,Wang JY
,Xing Y
,Ri M
,Jin CH
,Xu GH
,Piao LX
,Zuo HX
,Jin HL
,Ma J
,Jin X
... -
《-》
-
Erianin regulates programmed cell death ligand 1 expression and enhances cytotoxic T lymphocyte activity.
Dendrobium chrysotoxum Lindl is a cultivation of Dendrobium which belongs to the family of Orchidaceae. D. chrysotoxum Lindl is a traditional Chinese medicine with a wide range of clinical applications including tonic, astringent, analgesic and anti-inflammatory properties as early as the 28th century B.C. Erianin is a representative index component for the quality control of the D. chrysotoxum Lindl, which is included in the Pharmacopoeia of the People's Republic of China (2020 version).
To clarify the anti-tumour mechanisms of erianin in vitro and in vivo.
We detected the anti-tumour activity of erianin using in vitro HeLa cell models and in vivo cervical cancer xenograft models. We performed MTT, western blot, RT-PCR, homology modeling, flow cytometry, and immunoprecipitation assays to study the proteins, genes, and pathways related to erianin's anti-tumour activity. LysoTracker Red staining was performed to detect lysosome function. Transwell, wound healing, tube formation, colony formation and EdU labelling assays were performed to determine cell proliferation, migration and invasion abilities, respectively. Cytotoxic T lymphocytes ability was confirmed using HeLa/T-cell co-culture model.
Experimental data demonstrated that erianin inhibited PD-L1 expression and induced the lysosomal degradation of PD-L1. Erianin suppressed HIF-1α synthesis through mTOR/p70S6K/4EBP1 pathway, and inhibited RAS/Raf/MEK/MAPK-ERK pathway. Immunoprecipitation experiments demonstrated that erianin reduced the interaction between RAS and HIF-1α. Experiments using a co-cultivation system of T cells and HeLa cells confirmed that erianin restored cytotoxic T lymphocytes ability to kill tumour cells. Erianin inhibited PD-L1-mediated angiogenesis, proliferation, invasion and migration. The anti-proliferative effects of erianin were supported using in vivo xenotransplantation experiments.
Collectively, these results revealed previously unknown properties of erianin and provided a new basis for improving the efficacy of immunotherapy against cervical cancer and other malignant tumours through PD-L1.
Yang A
,Li MY
,Zhang ZH
,Wang JY
,Xing Y
,Ri M
,Jin CH
,Xu GH
,Piao LX
,Jin HL
,Zuo HX
,Ma J
,Jin X
... -
《-》
-
Fraxinellone has anticancer activity in vivo by inhibiting programmed cell death-ligand 1 expression by reducing hypoxia-inducible factor-1α and STAT3.
Dictamnus dasycarpus is a traditional Chinese medicine thathas been commonly used in the treatment of cancer. Fraxinellone is a natural product isolated from the D. dasycarpus plant, which has been shown to exhibit neuroprotective and anti-inflammatory activities. However, whether fraxinellone exerts anticancer effects and the mechanisms by which it may inhibit tumor growth remain unknown. Here, we found that fraxinellone, in a dose-dependented manner, inhibited the expression of programmed cell death ligand-1 (PD-L1), which plays a pivotal role in tumorigenesis. It was subsequently shown that fraxinellone reduced HIF-1α protein synthesis via the mTOR/p70S6K/eIF4E and MAPK pathways. It also inhibited activation of STAT3 via the JAK1, JAK2, and Src pathways. Immunoprecipitation and western blotting assays showed that fraxinellone inhibited PD-L1 expression by reducing STAT3 and HIF-1α cooperatively. Flow cytometry, colony formation, and EdU incorporation assays demonstrated that fraxinellone inhibited cell proliferation through suppression of PD-L1. Tube formation, migration, and invasion assays showed that fraxinellone inhibits angiogenesis by suppressing PD-L1. In vivo studies further supported anticancer role for fraxinellone, demonstrating that fraxinellone treatment inhibited the growth of tumor xenografts. We concluded that fraxinellone inhibits PD-L1 expression by downregulating the STAT3 and HIF-1α signaling pathways, subsequently inhibiting proliferation and angiogenesis in cancer cells. These studies reveal previously unknown characteristics of fraxinellone and provide new perspectives into the mechanism of cancer inhibition of the compound.
Xing Y
,Mi C
,Wang Z
,Zhang ZH
,Li MY
,Zuo HX
,Wang JY
,Jin X
,Ma J
... -
《-》
-
Convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer.
Aberrant activation of STAT3 is frequently encountered and promotes survival, cellular proliferation, migration, invasion and angiogenesis in tumor cell. Convallatoxin, triterpenoid ingredient, exhibits anticancer pharmacological properties.
In this work, we investigated the anticancer potential of convallatoxin and explored whether convallatoxin mediates its effect through interference with the STAT3 activation in colorectal cancer cells.
In vitro, the underlying mechanisms of convallatoxin at inhibiting STAT3 activation were investigated by homology modeling and molecular docking, luciferase reporter assay, MTT assay, RT-PCR, Western blotting and immunofluorescence assays. Changes in cellular proliferation, apoptosis, migration, invasion and angiogenesis were analyzed by EdU labeling assay, colony formation assay, flow cytometry assay, wound-healing assay, matrigel transwell invasion assay and tube formation assays. And in vivo, antitumor activity of convallatoxin was assessed in a murine xenograft model of HCT116 cells.
Convallatoxin decreased the viability of colorectal cancer lines. Moreover, convallatoxin reduced the P-STAT3 (T705) via the JAK1, JAK2, and Src pathways and inhibited serine-727 phosphorylation of STAT3 via the PI3K-AKT-mTOR-STAT3 pathways in colorectal cancer cells. Interestingly, we discovered the crosstalk between mTOR and JAK2 in mTOR/STAT3 and JAK/STAT3 pathways, which collaboratively regulated STAT3 activation and convallatoxin play a role in it. Convallatoxin also downregulated the expression of target genes involved cell survival (e.g., Survivin, Bcl-xl, Bcl-2), proliferation (e.g., Cyclin D1), metastasis (e.g., MMP-9), and angiogenesis (e.g., VEGF). Indeed, we found that convallatoxin inhibited tube formation, migration, and invasion of endothelial cells, and inhibited the proliferation. Finally, in vivo observations were confirmed by showing antitumor activity of convallatoxin in a murine xenograft model.
The result of the current study show that convallatoxin promotes apoptosis and inhibits proliferation and angiogenesis through crosstalk between JAK2/STAT3 (T705) and mTOR/STAT3 (S727) signaling pathways in colorectal cancer cells and indicate that convallatoxin could be a valuable candidate for the development of colorectal cancer therapeutic.
Zhang ZH
,Li MY
,Wang Z
,Zuo HX
,Wang JY
,Xing Y
,Jin C
,Xu G
,Piao L
,Piao H
,Ma J
,Jin X
... -
《-》