-
Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle.
Production and health traits are central in cattle breeding. Advances in next-generation sequencing technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide association studies (GWAS). Thus, numerous candidate genes that affect milk yield, milk composition, and mastitis resistance in dairy cattle are reported in the literature. Effect-bearing variants often affect multiple traits. Because the detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, multi-trait analysis is a better approach to detect pleiotropic effects of variants in candidate genes. However, large sample sizes are required to achieve sufficient power. Multi-trait meta-analysis is one approach to deal with this problem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield and fat yield), and one for milk yield and mastitis resistance.
For highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis compared with the subjective assessment of overlapping of single-trait QTL confidence intervals. Pleiotropic effects of lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confirmed by bivariate association analysis. The previously reported pleiotropic effects of variants within the DGAT1 and MGST1 genes on three milk production traits, and pleiotropic effects of variants in GHR on milk yield and fat yield were confirmed. Furthermore, our results suggested that variants in KCTD16, KCNK18 and ENSBTAG00000023629 had pleiotropic effects on milk production traits. For milk yield and mastitis resistance, we identified possible pleiotropic effects of variants in two genes, GC and DGAT1.
Multi-trait meta-analysis improves our ability to detect pleiotropic interactions between milk production traits and identifies variants with pleiotropic effects on milk production traits and mastitis resistance. In particular, this should contribute to better understand the biological mechanisms that underlie the unfavorable genetic correlation between milk yield and mastitis.
Cai Z
,Dusza M
,Guldbrandtsen B
,Lund MS
,Sahana G
... -
《-》
-
Genetic dissection of milk yield traits and mastitis resistance quantitative trait loci on chromosome 20 in dairy cattle.
Intense selection to increase milk yield has had negative consequences for mastitis incidence in dairy cattle. Due to low heritability of mastitis resistance and an unfavorable genetic correlation with milk yield, a reduction in mastitis through traditional breeding has been difficult to achieve. Here, we examined quantitative trait loci (QTL) that segregate for clinical mastitis and milk yield on Bos taurus autosome 20 (BTA20) to determine whether both traits are affected by a single polymorphism (pleiotropy) or by multiple closely linked polymorphisms. In the latter but not the former situation, undesirable genetic correlation could potentially be broken by selecting animals that have favorable variants for both traits. First, we performed a within-breed association study using a haplotype-based method in Danish Holstein cattle (HOL). Next, we analyzed Nordic Red dairy cattle (RDC) and Danish Jersey cattle (JER) with the goal of determining whether these QTL identified in Holsteins were segregating across breeds. Genotypes for 12,566 animals (5,966 HOL, 5,458 RDC, and 1,142 JER) were determined by using the Illumina Bovine SNP50 BeadChip (50K; Illumina, San Diego, CA), which identifies 1,568 single nucleotide polymorphisms on BTA20. Data were combined, phased, and clustered into haplotype states, followed by within- and across-breed haplotype-based association analyses using a linear mixed model. Association signals for both clinical mastitis and milk yield peaked in the 26- to 40-Mb region on BTA20 in HOL. Single-variant association analyses were carried out in the QTL region using whole sequence level variants imputed from references of 2,036 HD genotypes (BovineHD BeadChip; Illumina) and 242 whole-genome sequences. The milk QTL were also segregating in RDC and JER on the BTA20-targeted region; however, an indication of differences in the causal factor(s) was observed across breeds. A previously reported F279Y mutation (rs385640152) within the growth hormone receptor gene showed strong association with milk, fat, and protein yields. In HOL, the highest peaks for milk yield and susceptibility to mastitis were separated by over 3.5 Mb (3.8 Mb by haplotype analysis, 3.6 Mb by single nucleotide polymorphism analysis), suggesting separate genetic variants for the traits. Further analysis yielded 2 candidate mutations for the mastitis QTL, at 33,642,072 bp (rs378947583) in an intronic region of the caspase recruitment domain protein 6 gene and 35,969,994 bp (rs133596506) in an intronic region of the leukemia-inhibitory factor receptor gene. These findings suggest that it may be possible to separate these beneficial and detrimental genetic factors through targeted selective breeding.
Kadri NK
,Guldbrandtsen B
,Lund MS
,Sahana G
... -
《-》
-
Multi-trait meta-analyses reveal 25 quantitative trait loci for economically important traits in Brown Swiss cattle.
Little is known about the genetic architecture of economically important traits in Brown Swiss cattle because only few genome-wide association studies (GWAS) have been carried out in this breed. Moreover, most GWAS have been performed for single traits, thus not providing detailed insights into potentially existing pleiotropic effects of trait-associated loci.
To compile a comprehensive catalogue of large-effect quantitative trait loci (QTL) segregating in Brown Swiss cattle, we carried out association tests between partially imputed genotypes at 598,016 SNPs and daughter-derived phenotypes for more than 50 economically important traits, including milk production, growth and carcass quality, body conformation, reproduction and calving traits in 4578 artificial insemination bulls from two cohorts of Brown Swiss cattle (Austrian-German and Swiss populations). Across-cohort multi-trait meta-analyses of the results from the single-trait GWAS revealed 25 quantitative trait loci (QTL; P < 8.36 × 10) for economically relevant traits on 17 Bos taurus autosomes (BTA). Evidence of pleiotropy was detected at five QTL located on BTA5, 6, 17, 21 and 25. Of these, two QTL at BTA6:90,486,780 and BTA25:1,455,150 affect a diverse range of economically important traits, including traits related to body conformation, calving, longevity and milking speed. Furthermore, the QTL at BTA6:90,486,780 seems to be a target of ongoing selection as evidenced by an integrated haplotype score of 2.49 and significant changes in allele frequency over the past 25 years, whereas either no or only weak evidence of selection was detected at all other QTL.
Our findings provide a comprehensive overview of QTL segregating in Brown Swiss cattle. Detected QTL explain between 2 and 10% of the variation in the estimated breeding values and thus may be considered as the most important QTL segregating in the Brown Swiss cattle breed. Multi-trait association testing boosts the power to detect pleiotropic QTL and assesses the full spectrum of phenotypes that are affected by trait-associated variants.
Fang ZH
,Pausch H
《BMC GENOMICS》
-
Detection of quantitative trait loci in Danish Holstein cattle affecting clinical mastitis, somatic cell score, udder conformation traits, and assessment of associated effects on milk yield.
The aim of this study was to 1) detect QTL across the cattle genome that influence the incidence of clinical mastitis and somatic cell score (SCS) in Danish Holsteins, and 2) characterize these QTL for pleiotropy versus multiple linked quantitative trait loci (QTL) when chromosomal regions affecting clinical mastitis were also affecting other traits in the Danish udder health index or milk production traits. The chromosomes were scanned using a granddaughter design where markers were typed for 19 to 34 grandsire families and 1,373 to 2,042 sons. A total of 356 microsatellites covering all 29 autosomes were used in the scan. Among the across-family regression analyses, 16 showed chromosome-wide significance for the primary traits incidence of clinical mastitis in first (CM1), second (CM2), and third (CM3) lactations, and SCS. Regions of chromosomes 5, 6, 9, 11, 15, and 26 were found to affect CM and regions of chromosomes 5, 6, 8, 13, 22, 23, 24, and 25 affected SCS. Markers on chromosomes 6, 11, 15, and 26 can be used to perform marker-assisted selection on CM without a direct negative selection on milk yield, because no effects were detected on the milk traits. Comparing multi-trait models assuming either a pleiotropic QTL affecting 2 traits or 2 QTL each affecting 1 trait gave some evidence to distinguish between these models. For Bos taurus autosome 5, the most likely models were a pleiotropic QTL affecting CM2, CM3, and SCS, and a linked QTL affecting fat yield index. For Bos taurus autosome 9, the most likely model is a pleiotropic QTL affecting CM1 and CM2 at approximately 8 cM.
Lund MS
,Guldbrandtsen B
,Buitenhuis AJ
,Thomsen B
,Bendixen C
... -
《-》
-
Association analysis for udder index and milking speed with imputed whole-genome sequence variants in Nordic Holstein cattle.
Genome-wide association testing facilitates the identification of genetic variants associated with complex traits. Mapping genes that promote genetic resistance to mastitis could reduce the cost of antibiotic use and enhance animal welfare and milk production by improving outcomes of breeding for udder health. Using imputed whole-genome sequence variants, we carried out association studies for 2 traits related to udder health, udder index, and milking speed in Nordic Holstein cattle. A total of 4,921 bulls genotyped with the BovineSNP50 BeadChip array were imputed to high-density genotypes (Illumina BovineHD BeadChip, Illumina, San Diego, CA) and, subsequently, to whole-genome sequence variants. An association analysis was carried out using a linear mixed model. Phenotypes used in the association analyses were deregressed breeding values. Multitrait meta-analysis was carried out for these 2 traits. We identified 10 and 8 chromosomes harboring markers that were significantly associated with udder index and milking speed, respectively. Strongest association signals were observed on chromosome 20 for udder index and chromosome 19 for milking speed. Multitrait meta-analysis identified 13 chromosomes harboring associated markers for the combination of udder index and milking speed. The associated region on chromosome 20 overlapped with earlier reported quantitative trait loci for similar traits in other cattle populations. Moreover, this region was located close to the FYB gene, which is involved in platelet activation and controls IL-2 expression; FYB is a strong candidate gene for udder health and worthy of further investigation.
Jardim JG
,Guldbrandtsen B
,Lund MS
,Sahana G
... -
《-》