The relationship between 11 different polygenic longevity scores, parental lifespan, and disease diagnosis in the UK Biobank.
Large-scale genome-wide association studies (GWAS) strongly suggest that most traits and diseases have a polygenic component. This observation has motivated the development of disease-specific "polygenic scores (PGS)" that are weighted sums of the effects of disease-associated variants identified from GWAS that correlate with an individual's likelihood of expressing a specific phenotype. Although most GWAS have been pursued on disease traits, leading to the creation of refined "Polygenic Risk Scores" (PRS) that quantify risk to diseases, many GWAS have also been pursued on extreme human longevity, general fitness, health span, and other health-positive traits. These GWAS have discovered many genetic variants seemingly protective from disease and are often different from disease-associated variants (i.e., they are not just alternative alleles at disease-associated loci) and suggest that many health-positive traits also have a polygenic basis. This observation has led to an interest in "polygenic longevity scores (PLS)" that quantify the "risk" or genetic predisposition of an individual towards health. We derived 11 different PLS from 4 different available GWAS on lifespan and then investigated the properties of these PLS using data from the UK Biobank (UKB). Tests of association between the PLS and population structure, parental lifespan, and several cancerous and non-cancerous diseases, including death from COVID-19, were performed. Based on the results of our analyses, we argue that PLS are made up of variants not only robustly associated with parental lifespan, but that also contribute to the genetic architecture of disease susceptibility, morbidity, and mortality.
Don J
,Schork AJ
,Glusman G
,Rappaport N
,Cummings SR
,Duggan D
,Raju A
,Hellberg KG
,Gunn S
,Monti S
,Perls T
,Lapidus J
,Goetz LH
,Sebastiani P
,Schork NJ
... -
《-》
Polygenic risk score identifies associations between sleep duration and diseases determined from an electronic medical record biobank.
We aimed to detect cross-sectional phenotype and polygenic risk score (PRS) associations between sleep duration and prevalent diseases using the Partners Biobank, a hospital-based cohort study linking electronic medical records (EMR) with genetic information.
Disease prevalence was determined from EMR, and sleep duration was self-reported. A PRS for sleep duration was derived using 78 previously associated SNPs from genome-wide association studies (GWAS) for self-reported sleep duration. We tested for associations between (1) self-reported sleep duration and 22 prevalent diseases (n = 30 251), (2) the PRS and self-reported sleep duration (n = 6903), and (3) the PRS and the 22 prevalent diseases (n = 16 033). For observed PRS-disease associations, we tested causality using two-sample Mendelian randomization (MR).
In the age-, sex-, and race-adjusted model, U-shaped associations were observed for sleep duration and asthma, depression, hypertension, insomnia, obesity, obstructive sleep apnea, and type 2 diabetes, where both short and long sleepers had higher odds for these diseases than normal sleepers (p < 2.27 × 10-3). Next, we confirmed associations between the PRS and longer sleep duration (0.65 ± 0.19 SD minutes per effect allele; p = 7.32 × 10-04). The PRS collectively explained 1.4% of the phenotypic variance in sleep duration. After adjusting for age, sex, genotyping array, and principal components of ancestry, we observed that the PRS was also associated with congestive heart failure (CHF; p = 0.015), obesity (p = 0.019), hypertension (p = 0.039), restless legs syndrome (RLS; p = 0.041), and insomnia (p = 0.049). Associations were maintained following additional adjustment for obesity status, except for hypertension and insomnia. For all diseases, except RLS, carrying a higher genetic burden of the 78 sleep duration-increasing alleles (i.e. higher sleep duration PRS) associated with lower odds for prevalent disease. In MR, we estimated causal associations between genetically defined longer sleep duration with decreased risk of CHF (inverse variance weighted [IVW] OR per minute of sleep [95% CI] = 0.978 [0.961-0.996]; p = 0.019) and hypertension (IVW OR [95% CI] = 0.993 [0.986-1.000]; p = 0.049), and increased risk of RLS (IVW OR [95% CI] = 1.018 [1.000-1.036]; p = 0.045).
By validating the PRS for sleep duration and identifying cross-phenotype associations, we lay the groundwork for future investigations on the intersection between sleep, genetics, clinical measures, and diseases using large EMR datasets.
Dashti HS
,Redline S
,Saxena R
《-》
Cancer PRSweb: An Online Repository with Polygenic Risk Scores for Major Cancer Traits and Their Evaluation in Two Independent Biobanks.
To facilitate scientific collaboration on polygenic risk scores (PRSs) research, we created an extensive PRS online repository for 35 common cancer traits integrating freely available genome-wide association studies (GWASs) summary statistics from three sources: published GWASs, the NHGRI-EBI GWAS Catalog, and UK Biobank-based GWASs. Our framework condenses these summary statistics into PRSs using various approaches such as linkage disequilibrium pruning/p value thresholding (fixed or data-adaptively optimized thresholds) and penalized, genome-wide effect size weighting. We evaluated the PRSs in two biobanks: the Michigan Genomics Initiative (MGI), a longitudinal biorepository effort at Michigan Medicine, and the population-based UK Biobank (UKB). For each PRS construct, we provide measures on predictive performance and discrimination. Besides PRS evaluation, the Cancer-PRSweb platform features construct downloads and phenome-wide PRS association study results (PRS-PheWAS) for predictive PRSs. We expect this integrated platform to accelerate PRS-related cancer research.
Fritsche LG
,Patil S
,Beesley LJ
,VandeHaar P
,Salvatore M
,Ma Y
,Peng RB
,Taliun D
,Zhou X
,Mukherjee B
... -
《-》