Efficacy for Differentiating Nonglaucomatous Versus Glaucomatous Optic Neuropathy Using Deep Learning Systems.

来自 PUBMED

作者:

Yang HKKim YJSung JYKim DHKim KGHwang JM

展开

摘要:

We sought to assess the performance of deep learning approaches for differentiating nonglaucomatous optic neuropathy with disc pallor (NGON) vs glaucomatous optic neuropathy (GON) on color fundus photographs by the use of image recognition. Development of an Artificial Intelligence Classification algorithm. This single-institution analysis included 3815 fundus images from the picture archiving and communication system of Seoul National University Bundang Hospital consisting of 2883 normal optic disc images, 446 NGON images, and 486 GON images. The presence of NGON and GON was interpreted by 2 expert neuro-ophthalmologists and had corroborated evidence on visual field testing and optical coherence tomography. Images were preprocessed in size and color enhancement before input. We applied the convolutional neural network (CNN) of ResNet-50 architecture. The area under the precision-recall curve (average precision) was evaluated for the efficacy of deep learning algorithms to assess the performance of classifying NGON and GON. The diagnostic accuracy of the ResNet-50 model to detect GON among NGON images showed a sensitivity of 93.4% and specificity of 81.8%. The area under the precision-recall curve for differentiating NGON vs GON showed an average precision value of 0.874. False positive cases were found with extensive areas of peripapillary atrophy and tilted optic discs. Artificial intelligence-based deep learning algorithms for detecting optic disc diseases showed excellent performance in differentiating NGON and GON on color fundus photographs, necessitating further research for clinical application.

收起

展开

DOI:

10.1016/j.ajo.2020.03.035

被引量:

16

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(313)

参考文献(0)

引证文献(16)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读