The vascular dilatation induced by Hydroxysafflor yellow A (HSYA) on rat mesenteric artery through TRPV4-dependent calcium influx in endothelial cells.

来自 PUBMED

作者:

Yang JWang RCheng XQu HQi JLi DXing YBai YZheng X

展开

摘要:

Hydroxysafflor yellow A (HSYA) is the principal constituent of the flowers of Carthamus tinctorius L., a traditional Chinese herbal medicine, which has been used for the treatment of cerebrovascular and cardiovascular diseases due to its property of promoting blood circulation and removing blood stasis. It is dominated in the water extract of Carthamus tinctorius L., which has been used in the clinical treatment for cardiovascular diseases. HSYA exerts a variety of pharmacological efficacy upon the vascular system. However, the underlying mechanisms remain unclear. To investigate the vascular dilatation effect of HSYA on rat mesenteric artery (MA) and its potential mechanism. Adult male Wistar rats were applied to the study. Tension studies were conducted to determine the dilatation activity of HSYA against pre-contracted mesenteric arterial (MA) rings by U 46619 and Phenylephrine (PE). The vascular activities were measured with or without incubation with some selective inhibitors, including L-N(ω)-nitro-L-arginine methyl ester (L-NAME, a nitro oxide synthase inhibitor), HC-067047 (a selective TRPV4 antagonist), BaCl2 (a Kir channel blocker), and Indomethacin (Indo, a nonselective cyclooxygenase inhibitor), respectively. Immunocytochemistry, Calcium Imaging, NO Production detection, and Western Blot were also employed to further study the underlying mechanism. HSYA reversed the constriction of MAs induced by U 46619 in a manner of concentration dependency, and the dilatation capability was reversed by L-NAME. This effect was significantly dependent on the intactness of MA endothelium, accompanying an increment of NO production in mesenteric arterial endothelium cells. The increment of NO production was reversed by inhibiting the PKA. Also, the expression of p-eNOS was activated by HSYA shown in Western Blot assays. The cells imaging revealed a significant increase and drop of the influx of Ca2+ before and after treatment with HC-067047. These findings suggest that HSYA exerts vessel dilation effect on MAs via a TRPV4-dependent influx of Ca2+ in endothelium cells, PKA-dependent eNOS phosphorylation and NO production mechanism. The present study indicates that HSYA has the potential to be a future candidate for the treatment of hypertension.

收起

展开

DOI:

10.1016/j.jep.2020.112790

被引量:

13

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(246)

参考文献(0)

引证文献(13)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读