The vascular dilatation induced by Hydroxysafflor yellow A (HSYA) on rat mesenteric artery through TRPV4-dependent calcium influx in endothelial cells.
摘要:
Hydroxysafflor yellow A (HSYA) is the principal constituent of the flowers of Carthamus tinctorius L., a traditional Chinese herbal medicine, which has been used for the treatment of cerebrovascular and cardiovascular diseases due to its property of promoting blood circulation and removing blood stasis. It is dominated in the water extract of Carthamus tinctorius L., which has been used in the clinical treatment for cardiovascular diseases. HSYA exerts a variety of pharmacological efficacy upon the vascular system. However, the underlying mechanisms remain unclear. To investigate the vascular dilatation effect of HSYA on rat mesenteric artery (MA) and its potential mechanism. Adult male Wistar rats were applied to the study. Tension studies were conducted to determine the dilatation activity of HSYA against pre-contracted mesenteric arterial (MA) rings by U 46619 and Phenylephrine (PE). The vascular activities were measured with or without incubation with some selective inhibitors, including L-N(ω)-nitro-L-arginine methyl ester (L-NAME, a nitro oxide synthase inhibitor), HC-067047 (a selective TRPV4 antagonist), BaCl2 (a Kir channel blocker), and Indomethacin (Indo, a nonselective cyclooxygenase inhibitor), respectively. Immunocytochemistry, Calcium Imaging, NO Production detection, and Western Blot were also employed to further study the underlying mechanism. HSYA reversed the constriction of MAs induced by U 46619 in a manner of concentration dependency, and the dilatation capability was reversed by L-NAME. This effect was significantly dependent on the intactness of MA endothelium, accompanying an increment of NO production in mesenteric arterial endothelium cells. The increment of NO production was reversed by inhibiting the PKA. Also, the expression of p-eNOS was activated by HSYA shown in Western Blot assays. The cells imaging revealed a significant increase and drop of the influx of Ca2+ before and after treatment with HC-067047. These findings suggest that HSYA exerts vessel dilation effect on MAs via a TRPV4-dependent influx of Ca2+ in endothelium cells, PKA-dependent eNOS phosphorylation and NO production mechanism. The present study indicates that HSYA has the potential to be a future candidate for the treatment of hypertension.
收起
展开
DOI:
10.1016/j.jep.2020.112790
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(246)
参考文献(0)
引证文献(13)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无