Suyin Detoxification Granule alleviates trimethylamine N-oxide-induced tubular ferroptosis and renal fibrosis to prevent chronic kidney disease progression.
Trimethylamine N-oxide (TMAO), a gut microbiota metabolite, is a risk factor for chronic kidney disease (CKD) progression. Suyin Detoxification Granule (SDG) is a traditional Chinese medicine preparation that has been proven to significantly reduce renal function damage and serum TMAO levels in patients with CKD. However, its specific mechanism remains unclear.
This study investigated the role of TMAO-induced ferroptosis in CKD, and further explored the mechanism of SDG in improving TMAO-induced kidney injury.
A TMAO renal tubular epithelial cell injury model was constructed in vitro. After using freeze-dried powder of Suyin Detoxification Prescription (SDP), proteomic analysis, Western blotting, ferroptosis phenotype-related detection, and ELISA were performed to explore its mechanism. In vivo, a adenine-induced CKD model was established, with or without a high-choline diet to observe the impact of TMAO on CKD, and SDG or 3,3-Dimethyl-1-butanol (DMB, a TMAO inhibitor) was used for intervention. The composition of gut microbiota was analyzed using 16SrRNA sequencing, and the effect of SDG on gut-derived TMAO-induced kidney injury under the background of CKD was evaluated by pathological staining, immunoblotting, immunohistochemistry, and fluorescence staining.
In vitro, TMAO could induce ferroptosis and secrete profibrotic factors in NRK-52E cells. SDP could inhibit TMAO-induced ferroptosis and reduce the secretion of profibrotic factors. The amelioration of ferroptosis by SDP was also verified in RSL3-induced cells. In vivo, our results demonstrated that gut-derived TMAO could promote CKD progression by inducing tubular ferroptosis, profibrotic factors expression and renal fibrosis. In addition, we illustrated that SDG might reduce circulating TMAO levels by down-regulating the gut microbiota related to TMAO (including Muribaculaceae, Bacteroides and Ruminococcaceae_UCG-010). Furthermore, SDG could prevent CKD progression by reducing TMAO-induced renal damage.
SDG reduced circulating TMAO levels by regulating gut microbiota and inhibited TMAO-induced renal tubular ferroptosis, profibrotic factors secretion, and renal fibrosis to prevent CKD progression.
Ge H
,Wei Y
,Zhang W
,Yong C
,Chen Y
,Zhou E
... -
《-》
Association of trimethylamine N-oxide and metabolites with kidney function decline in patients with chronic kidney disease.
Trimethylamine N-oxide (TMAO) is a gut microbial metabolite derived from dietary l-carnitine and choline. High plasma TMAO levels are associated with cardiovascular disease and overall mortality, but little is known about the associations of TMAO and related metabolites with the risk of kidney function decline among patients with chronic kidney disease (CKD).
We prospectively followed 152 nondialysis patients with CKD stages 3-5 and measured plasma TMAO and related metabolites (trimethylamine [TMA], choline, carnitine, and γ-butyrobetaine) via liquid chromatography‒mass spectrometry. An estimated glomerular filtration rate (eGFR) slope >3 ml/min/per 1.73 m2 per year was defined as a rapid decline. We performed logistic regression to determine the probability of rapid or slow eGFR decline, with each metabolite as the main predictor. The gut microbiota was profiled via whole metagenomic sequencing.
The participants had a median age of 66 years, 41.4 % were women, 39.5 % had diabetes, and the median eGFR was 23 mL/min/1.73 m2. A rapid decrease in the eGFR occurred in 65 patients (42.8 %) over a median follow-up of 3.3 years. After adjustment for baseline eGFR, proteinuria, and clinical factors, plasma TMAO levels were independently associated with increased odds of rapid eGFR decline (odds ratio, 2.42; 95 % CI, 1.36-4.32), whereas plasma TMA, choline, carnitine, and γ-butyrobetaine levels were not. Patients who exhibited rapid eGFR decline had a distinct gut microbial composition characterized by increased α-diversity and an abundance of TMA-producing bacteria, including those of the genera Desulfovibrio and Collinsella tanakaei, as well as increased expression of the TMA-producing enzymes bbuA and cutC.
Our findings suggest the relevance of plasma TMAO in the progression of kidney disease among patients with CKD.
Cheng E
,Hung SC
,Lin TY
《-》
Potential Trimethylamine (TMA)-Producing Bacteria in patients with chronic kidney disease undergoing hemodialysis.
Trimethylamine (TMA), produced by gut microbiota, is the precursor of trimethylamine-N-oxide (TMAO), a uremic toxin that accumulates in patients with chronic kidney disease (CKD). Elevated TMAO plasma levels are associated with cardiovascular complications and CKD progression.
To evaluate the association between gut microbiota composition and TMAO plasma levels in CKD patients undergoing hemodialysis (HD).
This is a cross-sectional study with 25 patients evaluated (60% female, 53 (18) years, body mass index (BMI) 25.8 (6.75) Kg/m2). They were divided into two groups according to their TMAO plasma levels: normal (≤ 7.4 μM) and high (> 7.4 μM). Uremic toxins such as indoxyl sulfate (IS), p-cresyl sulfate (pCS), and indol acetic acid (IAA) were measured with RP-HPLC, and TMAO plasma levels were quantified using LC-MS/MS. Fecal DNA was extracted with a commercial kit, PCR amplified the V4 region of the 16S rRNA gene, and short-read sequencing was performed on the Illumina platform. Dietary intake, anthropometric measurements, and inflammation markers were also evaluated. Nrf2, NF-κB, IL-1β, and NLRP3 mRNA expressions were measured from peripheral blood mononuclear cells (PBMC) using quantitative real-time polymerase chain reaction (qPCR).
There were significant positive correlations between TMAO and plasma levels of pCS, NLPR3 inflammasome mRNA expression, serum phosphorus levels, and negative correlations with dietary lipid intake. The group with TMAO > 7.4 μM showed an increase in the microbiome abundance of Saccharibacteria (genus incertae sedis), Colidextribacter, Dorea, and Staphylococci genera, and a decrease in abundance in the genera Lachnospira, Lactobacilli, and Victivallis. TMAO plasma level was positively correlated with the abundance of bacteria of the genera Colidextribacter and Helicobacter and was negatively correlated with Sphingomanos, Lachnospira, Streptomyces, and Bacillus genera.
Saccharibacteria (genus incertae sedis), Colidextribacter, Dorea, and Staphylococci genera showed higher abundance in patients with high TMAO levels. In addition, we observed that elevated plasma TMAO levels are associated with inflammation markers, dietary lipid intake, and serum phosphorus levels in patients undergoing HD.
Alvarenga L
,Kemp JA
,Schultz J
,Cardozo LFMF
,Nakao LS
,Ribeiro-Alves M
,Rosado A
,Mafra D
... -
《-》