-
Total alkaloids of Sophora alopecuroides L. ameliorated murine colitis by regulating bile acid metabolism and gut microbiota.
Sophora alopecuroides L. is one of the most commonly used plants in traditional medicine for the management conditions including inflammatory and gastrointestinal disease. However, the therapeutic mechanism of Sophora alopecuroides L.particularly in inflammatory bowel disease (IBD) remains unclear.
To evaluate the treatment effects of total alkaloids of Sophora alopecuroides L. in ulcerative colitis (UC) mice model and explore the therapeutic mechanism of KDZ on UC based on bile acid metabolism and gut microbiota.
Colitis were induced in BALB/c mice by administering 3.5% dextran sulfate sodium (DSS) in drinking water for 7 days. The mice were then given KDZ (300, 150 and 75 mg/kg) and the positive drug sulfasalazine (SASP, 450 mg/kg) via oral administration for 7 days. The levels of 23 bile acids in the liver, bile, serum, cecum content and colon were determined through ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). The cecum microbiota was characterized through high-throughput Illumina MiSeq sequencing.
KDZ treatment significantly decreased the disease activity index (DAI) scores and ameliorated colonic injury in DSS-treated mice. The expression of IL-1β and TGF-β1 were suppressed, yet, IL-10 was up-regulated by KDZ and SASP treatment compared with those in the model group. Meanwhile, the serum contents of total bile acid and total cholesterol in the DSS group increased significantly compared with those in the control group, but reversed by SASP and KDZ. The relative abundance of Firmicutes increased after KDZ was administration, whereas the abundance of Bacteroidetes decreased. αMCA, βMCA, ωMCA and CA in the SASP and KDZ groups did not differ from those in the control group, whereas these parameters significantly increased in the DSS group.
KDZ had a protective effect on DSS-induced colitis by mitigating colonic injury, preventing gut microbiota dysbiosis and regulating bile acid metabolism.
Jia YQ
,Yuan ZW
,Zhang XS
,Dong JQ
,Liu XN
,Peng XT
,Yao WL
,Ji P
,Wei YM
,Hua YL
... -
《-》
-
Ethanol extract of Centella asiatica alleviated dextran sulfate sodium-induced colitis: Restoration on mucosa barrier and gut microbiota homeostasis.
Ulcerative colitis (UC) is a relapsing inflammatory disease that still demands for effective remedies due to various adverse effects of the current principal treatments. Centella asiatica is a traditional medical herb with long application history in anti-inflammation.
To explore the anti-inflammatory effect and possible mechanism of C. asiatica ethanol extract (CA) in a murine colitis model induced by dextran sulfate sodium (DSS).
CA was analyzed by high performance liquid chromatograph (HPLC). The colitis model was induced by free access to 3% DSS in distilled water for 7 days. CA (100, 200, and 400 mg/kg) and 5-aminosalicylic acid (5-ASA, 400 mg/kg) were administrated by gavage during the 7-day DSS challenge. At the end of experiment, mice were sacrificed and the brain, colon and cecum contents were harvested for analysis. Colitis was evaluated by disease activity index (DAI), colon length and colon lesion macroscopic score with hematoxylin-eosin staining. Myeloperoxidase (MPO) activity in colon and 5-hydroxytryptamine (5-HT) in brain were determined by ELISA. Tight junction protein expressions (ZO-1, E-Cadherin, Claudin-1) and c-Kit in colon were assessed by western blot and immunohistochemistry, respectively. Microbiota of cecum content was analyzed by 16S rRNA sequencing.
Data showed that with recovery on the colon length and histological structure, CA prominently decreased DAI and macroscopic score for lesion in the suffering mice. CA relieved the colitis by suppressing inflammatory cell infiltration with decreased MPO activity in the colon, and up-regulated the expression of tight junction protein (ZO-1, E-cadherin) to enhance the permeability of intestinal mucosa. Moreover, CA restored intestinal motility by promoting c-Kit expression in the colon and 5-HT in the brain. Moreover, CA was able to reshape the gut microbiota in the suffering mice. It increased the α-diversity and shifted the community by depleting the colitis-associated genera, Helicobacter, Jeotgalicoccus and Staphylococcus, with impact on several metabolism signaling pathways, which possibly contributes to the renovation on the impaired intestinal mucosal barrier.
CA displayed the anti-inflammatory activity against the DSS-induced colitis, which would possibly rely on the restoration on mucosa barrier and gut microbiota homeostasis, highlights a promising application of C. asiatica in the clinical treatment of UC.
Li H
,Chen X
,Liu J
,Chen M
,Huang M
,Huang G
,Chen X
,Du Q
,Su J
,Lin R
... -
《-》
-
Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota.
Inflammatory bowel disease (IBD), majorly include Crohn's disease (CD) and ulcerative colitis (UC), is chronic and relapsing inflammatory disorders of the gastrointestinal tract, which treatment options remain limited. Here we examined the therapeutic effects of an isoquinoline alkaloid, Palmatine (Pal), on mice experimental colitis induced by dextran sulfate sodium (DSS) and explored underlying mechanisms. Colitis was induced in BALB/c mice by administering 3% DSS in drinking water for 7 days. Pal (50 and 100 mg kg-1) and the positive drug Sulfasalazine (SASP, 200 mg kg-1) were orally administered for 7 days. Disease activity index (DAI) was evaluated on day 8, and colonic tissues were collected for biochemistry analysis. The fecal microbiota was characterized by high-throughput Illumina MiSeq sequencing. And plasma metabolic changes were detected by UPLC-MS. Our results showed that Pal treatment significantly reduced DAI scores and ameliorated colonic injury in mice with DSS-induced colitis. Mucosal integrity was improved and cell apoptosis was inhibited. Moreover, gut microbiota analysis showed that mice received Pal-treatment have higher relative abundance of Bacteroidetes and Firmicutes, but reduced amount of Proteobacteria. Moreover, Pal not only suppressed tryptophan catabolism in plasma, but also decreased the protein expression of indoleamine 2,3-dioxygenase 1 (IDO-1, the rate-limiting enzyme of tryptophan catabolism) in colon tissue. This is consolidated by molecular docking, which suggested that Pal is a potent IDO-1 inhibitor. Taken together, our findings demonstrate that Pal ameliorated DSS-induced colitis by mitigating colonic injury, preventing gut microbiota dysbiosis, and regulating tryptophan catabolism, which indicated that Pal has great therapeutic potential for colitis.
Zhang XJ
,Yuan ZW
,Qu C
,Yu XT
,Huang T
,Chen PV
,Su ZR
,Dou YX
,Wu JZ
,Zeng HF
,Xie Y
,Chen JN
... -
《-》
-
Baitouweng Tang ameliorates DSS-induced ulcerative colitis through the regulation of the gut microbiota and bile acids via pathways involving FXR and TGR5.
In China, Baitouweng Tang (BTWT) is a commonly prescribed remedy for the treatment of ulcerative colitis (UC). Herein, the present study aims to assess the anti-colitis activity of BTWT and its underlying mechanisms in UC BALB/c mice. Induction of UC in BALB/c mice was carried out by adding 3.5% DSS in the drinking water of underlined mice. After UC induction, the mice were administrated with BTWT for 7 days. Clinical symptoms were assessed, followed by analyzing the bile acids (BAs) in serum, liver, colon, bile, and feces of UC mice through UPLC-MS/MS. The modified 16S rDNA high-throughput sequencing was carried out to examine the gut microbiota of feces. BTWT significantly improved the clinical symptoms such as and histological injury and colon shortening in UC induced mice. Furthermore, BTWT remarkably ameliorated colonic inflammatory response. After BTWT treatment, the increased concentrations of UDCA, HDCA, αMCA, βMCA, CA, and GLCA in UC were decreased, and the levels of some BAs, especially CA, αMCA, and βMCA were normalized. Moreover, the relative species abundance and gut microbiota diversity in the BTWT-exposed groups were found to be considerably elevated than those in the DSS-treated group. BTWT increased the relative abundance of Firmicutes, Proteobacteria, Actinobacteria, Tenericutes, and TM7, which were statistically lower in the fecal microbiota of UC mice. The relative abundance of Bacteroidetes was found to be elevated in the DSS group and normalized after BTWT treatment. BTWT increased the expression of FXR and TGR5 in the liver. BTWT administration improved DSS-induced mice signs by increasing the TGR5 and FXR expression levels. This result was achieved by the regulation of the BAs and gut microbiota.
Hua YL
,Jia YQ
,Zhang XS
,Yuan ZW
,Ji P
,Hu JJ
,Wei YM
... -
《-》
-
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside, a major bioactive component from Polygoni multiflori Radix (Heshouwu) suppresses DSS induced acute colitis in BALb/c mice by modulating gut microbiota.
Inflammatory bowel disease (IBD) includes ulcerative colitis (UC) and Crohn's disease (CD), which is a common idiopathic digestive disease without a specific cure or treatment for improvement. Because Polygoni multiflori Radix has a traditional medicinal use to treat intestinal diseases, and the water extract of this herbal medicine had a positive influence on dextran sulfate sodium (DSS) induced UC model in our study. Meanwhile 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG) as the major component of the water extract of Polygoni multiflori Radix with yield of more than 10% exhibited the remarkable anti-inflammatory activity in vivo and in vitro, we predicted that TSG may contribute to benefit intestinal tract presented by the water extract of Polygoni multiflori Radix. Therefore, the present study aims to explore the pharmacological effect of this compound on UC model and its possible mechanism to regulate intestinal function through gut microbiota.
Ulcerative colitis model was established in BALb/c mice by continuously administrating 3% (w/v) DSS aqueous solution for one week. The disease activity index (DAI), colon length, histopathological examination by H&E and the levels of tight junction proteins (TJP) by immunofluorescence staining were performed in ulcerative colitis model following the protocol. Furthermore, the levels of main inflammatory factors like TNF-α, IL-β, IL-6, and IL-10 were analyzed by the ELIZA kits for the further confirmation of anti-inflammatory activity of TSG on ulcerative colitis model. Finally, 16S rDNA sequencing technology was conducted to explore the composition and relative abundance of gut microbiota of different treatment groups.
TSG treatments effectively increased body weight about 5% of those in DSS group (p < 0.001) as well remarkably reduced the DAI scores to the 50% of those in DSS group (p < 0.001) in the UC model. TSG treatments of either 25 mg/kg (TSG-25) or 100 mg/kg (TSG-100) dosage restored epithelial barrier structure and exhibited obviously intact colon histology with reduced signs of inflammatory cells infiltration, preserved epithelia barrier, restored crypt structure, and increased numbers of goblet cells. TSG treatments could markedly lessen the histopathologic score two or three times than those in DSS group (p < 0.001). Especially for TSG-100 treatment, the fluorescence intensity of ZO-1 and Occludin were nearly back to 80% of those in normal group, and were 1.5 times more than those in the DSS group (p < 0.001). Additionally, direct evidence pointed to TSG as a therapeutically active molecule in the prevention and treatment of UC by significantly reducing the production of these pro-inflammatory cytokines like TNF-α, IL-1β, and IL-6 (p < 0.05-0.001) and increasing the levels of anti-inflammatory cytokine IL-10 (p < 0.05-0.001). Finally, it was found TSG treatments significantly raised the relative abundances of Firmicutes and Bacteroidetes with a dose-dependently and improved the homeostasis of the gut microbiota composition which disrupted by DSS through increasing genus level Lachnospiraceae_NK4A136 and decreasing genus level of Helicobacter, Bacteroides, Parabacteroides.
The present results suggested that TSG treatments had a desirable pharmacological effect on acute colitis induced by DSS in the mice as well showed the possible mechanism relate to improve the intestinal function through balancing the gut microbiota of intestinal flora.
He X
,Liu J
,Long G
,Xia XH
,Liu M
... -
《-》