Long non-coding RNA-H19 stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via the microRNA-149/SDF-1 axis.
摘要:
Bone defects resulting from non-union fractures or tumour resections are common clinical problems. Long non-coding RNAs (lncRNAs) are reported to play vital roles in stem cell differentiation. The aim of this study was to elucidate the role of lncRNA-H19 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs). Following the establishment of an osteogenic differentiation model in rats, the expression of H19, microRNA-149 (miR-149) and stromal cell-derived factor-1 (SDF-1) was measured by RT-qPCR. Thereafter, BMMSCs were isolated from rats and treated with a series of mimic, inhibitor or siRNA. SDF-1 expression, alkaline phosphatase (ALP) activity and osteocalcin (OCN) content were detected. The mineralized and calcified nodules were assessed by alizarin red S and Von Kossa staining. BMMSC surface markers were detected by flow cytometry. Western blot analysis was used to measure the expression of ALP, OCN, runt-related transcription factor 2 (RUNX2) and osterix (OSX) proteins. Lastly, dual-luciferase reporter gene assay and RNA immunoprecipitation were applied to verify the relationship of H19, miR-149 and SDF-1. Overexpressed H19 and SDF-1 and poorly expressed miR-149 were found in rats with osteogenic differentiation. H19 increased SDF-1 expression by binding to miR-149. H19 enhanced ALP activity, OCN content, calcium deposit and ALP, OCN, RUNX2 and OSX protein expression of BMMSCS by up-regulating SDF-1 via binding to miR-149. Taken together, up-regulated H19 could promote the osteogenic differentiation of BMMSCs by increasing SDF-1 via miR-149.
收起
展开
DOI:
10.1111/jcmm.15040
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(100)
参考文献(30)
引证文献(26)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无