The role of vascularization on changes in ligamentum flavum mechanical properties and development of hypertrophy in patients with lumbar spinal stenosis.

来自 PUBMED

作者:

Jezek JSepitka JDaniel MKujal PBlankova AWaldauf PKrbec MDousa PSkala-Rosenbaum JSamal FJirasek T

展开

摘要:

Ligamentum flavum (LF) induced lumbar spinal stenosis (LSS) is conditioned not only by its "gathering" but especially by hypertrophy. Previous studies have examined the pathophysiology and biochemical changes that cause the hypertrophy. Some studies have described a link between chronic LF inflammation and neovascularization but others have reported highly hypovascular LF tissue in LSS patients. Currently, there is no practical application for our knowledge of the pathophysiology of the LF hypertrophy. Considerations for future treatment include influencing this hypertrophy at the level of tissue mediators, which may slow the development of LSS. To our knowledge, there is no study of micromechanical properties of native LF to date. (1) To clarify the changes in vascularization, chondroid metaplasia, and the presence of inflammatory cell infiltration in LF associated with LSS. (2) To quantify changes in the micromechanical properties associated with LF degenerative processes. Vascular density analysis of degenerated and healthy human LF combined with measurement of micromechanical properties. The study involved 35 patients who underwent surgery between November 1, 2015 and October 1, 2016. The LSS group consisted of 20 patients and the control group consisted of 15 patients. LF samples were obtained during the operation and were used for histopathological and nanoindentation examinations. Sample vascularization was examined as microvascular density (Lv), which was morphometrically evaluated using semiautomatic detection in conjunction with NIS-Elements AR image analysis software. Samples were also histologically examined for the presence of chondroid metaplasia and inflammation. Mechanical properties of native LF samples were analyzed using the Hysitron TI 950 TriboIndenter nanomechanical testing system. Vascular density was significantly lower in the LSS group. However, after excluding the effect of age, the difference was not significant. There was high association between Lv and age. With each increasing year of age, Lv decreased by 11.5 mm2. Vascular density decreased up to the age of 50. Over the age of 50, changes were no longer significant and Lv appeared to stabilize. No correlation was observed between Lv and the presence of inflammation or metaplasia; however, LSS patients had a significantly increased incidence of chondroid metaplasia and inflammatory signs. The mechanical properties of control group samples showed significantly higher stiffness than those samples obtained from the LSS group. This study showed that Lv changes were not dependent on LSS but were age-dependent. Vascular density was found to decrease up to the age of 50. A significantly higher incidence of chondroid metaplasia and inflammation was observed in LSS patients. The mechanical property values measured by nanoindentation showed high microstructural heterogeneity of the tested ligaments. Our results showed that healthy ligaments were significantly stiffer than LSS ligaments. Prevention of the loss of LF vascularization during aging may influence stiffness of LF which in turn may slow down the LF degenerative processes and delay onset of LSS.

收起

展开

DOI:

10.1016/j.spinee.2020.03.002

被引量:

6

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(183)

参考文献(0)

引证文献(6)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读