Impact of Plasmid-Encoded H-NS-like Protein on blaNDM-1-Bearing IncX3 Plasmid in Escherichia coli.

来自 PUBMED

作者:

Liu BShui LZhou KJiang YLi XGuan JLi QZhuo C

展开

摘要:

This study was performed to assess the role of the histone-like nucleoid-structuring (H-NS)-like protein, carried by blaNDM-1-encoding IncX3-type plasmids, in the dissemination of IncX3 plasmids. The blaNDM-1-encoding IncX3 plasmids were analyzed using southern blot, conjugation, and competition assays. Virulence was evaluated with a Galleria mellonella infection model. An hns-knockout IncX3 plasmid was also constructed to identify the functions of plasmid-borne H-NS-like protein in Escherichia coli. The assasys detected blaNDM-1-encoding IncX3-type plasmids with similar fingerprint patterns in all New Delhi metallo-β-lactamase (NDM) 1-producing carbapenem-resistant Enterobacteriaceae. The IncX3 plasmid conferred a fitness advantage to E. coli J53 but had no effect on host virulence. Moreover, the transconjugation frequency of the hns-null IncX3 plasmid pHN330-△hns was increased by 2.5-fold compared with the wild type. This was caused by up-regulation of conjugation-related plasmid-borne genes and the partition-related gene, in the J330-pHN330-△hns strain. In addition, decreased virulence was detected with this variant. Our results highlight the important role of IncX3 plasmids in the dissemination of blaNDM-1 in south China. Plasmid-encoded H-NS-like protein can inhibit plasmid conjugation, partition, and the expression of related genes, in addition to promoting virulence in the host.

收起

展开

DOI:

10.1093/infdis/jiz567

被引量:

11

年份:

2020

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(324)

参考文献(0)

引证文献(11)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读