Difference in LET-based biological doses between IMPT optimization techniques: Robust and PTV-based optimizations.
While a large amount of experimental data suggest that the proton relative biological effectiveness (RBE) varies with both physical and biological parameters, current commercial treatment planning systems (TPS) use the constant RBE instead of variable RBE models, neglecting the dependence of RBE on the linear energy transfer (LET). To conduct as accurate a clinical evaluation as possible in this circumstance, it is desirable that the dosimetric parameters derived by TPS ( D RBE = 1.1 ) are close to the "true" values derived with the variable RBE models ( D v RBE ). As such, in this study, the closeness of D RBE = 1.1 to D v RBE was compared between planning target volume (PTV)-based and robust plans.
Intensity-modulated proton therapy (IMPT) treatment plans for two Radiation Therapy Oncology Group (RTOG) phantom cases and four nasopharyngeal cases were created using the PTV-based and robust optimizations, under the assumption of a constant RBE of 1.1. First, the physical dose and dose-averaged LET (LETd ) distributions were obtained using the analytical calculation method, based on the pencil beam algorithm. Next, D v RBE was calculated using three different RBE models. The deviation of D v RBE from D RBE = 1.1 was evaluated with D99 and Dmax , which have been used as the evaluation indices for clinical target volume (CTV) and organs at risk (OARs), respectively. The influence of the distance between the OAR and CTV on the results was also investigated. As a measure of distance, the closest distance and the overlapped volume histogram were used for the RTOG phantom and nasopharyngeal cases, respectively.
As for the OAR, the deviations of D max v RBE from D max RBE = 1.1 were always smaller in robust plans than in PTV-based plans in all RBE models. The deviation would tend to increase as the OAR was located closer to the CTV in both optimization techniques. As for the CTV, the deviations of D 99 v RBE from D 99 RBE = 1.1 were comparable between the two optimization techniques, regardless of the distance between the CTV and the OAR.
Robust optimization was found to be more favorable than PTV-based optimization in that the results presented by TPS were closer to the "true" values and that the clinical evaluation based on TPS was more reliable.
Hirayama S
,Matsuura T
,Yasuda K
,Takao S
,Fujii T
,Miyamoto N
,Umegaki K
,Shimizu S
... -
《Journal of Applied Clinical Medical Physics》
Introducing Proton Track-End Objectives in Intensity Modulated Proton Therapy Optimization to Reduce Linear Energy Transfer and Relative Biological Effectiveness in Critical Structures.
We propose the use of proton track-end objectives in intensity modulated proton therapy (IMPT) optimization to reduce the linear energy transfer (LET) and the relative biological effectiveness (RBE) in critical structures.
IMPT plans were generated for 3 intracranial patient cases (1.8 Gy (RBE) in 30 fractions) and 3 head-and-neck patient cases (2 Gy (RBE) in 35 fractions), assuming a constant RBE of 1.1. Two plans were generated for each patient: (1) physical dose objectives only (DOSEopt) and (2) same dose objectives as the DOSEopt plan, with additional proton track-end objectives (TEopt). The track-end objectives penalized protons stopping in the risk volume of choice. Dose evaluations were made using a RBE of 1.1 and the LET-dependent Wedenberg RBE model, together with estimates of normal tissue complication probabilities (NTCPs). In addition, the distributions of proton track-ends and dose-average LET (LETd) were analyzed.
The TEopt plans reduced the mean LETd in the critical structures studied by an average of 37% and increased the mean LETd in the primary clinical target volume (CTV) by an average of 23%. This was achieved through a redistribution of the proton track-ends, concurrently keeping the physical dose distribution virtually unchanged compared to the DOSEopt plans. This resulted in substantial RBE-weighted dose (DRBE) reductions, allowing the TEopt plans to meet all clinical goals for both RBE models and reduce the NTCPs by 0 to 19 percentage points compared to the DOSEopt plans, assuming the Wedenberg RBE model. The DOSEopt plans met all clinical goals assuming a RBE of 1.1 but failed 10 of 19 normal tissue goals assuming the Wedenberg RBE model.
Proton track-end objectives allow for LETd reductions in critical structures without compromising the physical target dose. This approach permits the lowering of DRBE and NTCP in critical structures, independent of the variable RBE model used, and it could be introduced in clinical practice without changing current protocols based on the constant RBE of 1.1.
Traneus E
,Ödén J
《-》
Dose averaged linear energy transfer optimization for large sacral chordomas in carbon ion therapy.
Carbon ion beams are well accepted as densely ionizing radiation with a high linear energy transfer (LET). However, the current clinical practice does not fully exploit the highest possible dose-averaged LET (LETd) and, consequently, the biological potential in the target. This aspect becomes worse in larger tumors for which inferior clinical outcomes and corresponding lower LETd was reported.
The vicinity to critical organs in general and the inferior overall survival reported for larger sacral chordomas treated with carbon ion radiotherapy (CIRT), makes the treatment of such tumors challenging. In this work it was aimed to increase the LETd in large volume tumors while maintaining the relative biological effectiveness (RBE)-weighted dose, utilizing the LETd optimization functions of a commercial treatment planning system (TPS).
Ten reference sequential boost carbon ion treatment plans, designed to mimic clinical plans for large sacral chordoma tumors, were generated. High dose clinical target volumes (CTV-HD) larger than 250 cm 3 $250 \,{\rm cm}^{3}$ were considered as large targets. The total RBE-weighted median dose prescription with the local effect model (LEM) was D RBE , 50 % = 73.6 Gy $\textrm {D}_{\rm RBE, 50\%}=73.6 \,{\rm Gy}$ in 16 fractions (nine to low dose and seven to high dose planning target volume). No LETd optimization was performed in the reference plans, while LETd optimized plans used the minimum LETd (Lmin) optimization function in RayStation 2023B. Three different Lmin values were investigated and specified for the seven boost fractions: L min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ , L min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ and L min = 100 keV / μ m $\textrm {L}_{\rm min}=100 \,{\rm keV}/{\umu }{\rm m}$ . To compare the LETd optimized against reference plans, LETd and RBE-weighted dose based goals similar to and less strict than clinical ones were specified for the target. The goals for the organs at risk (OAR) remained unchanged. Robustness evaluation was studied for eight scenarios ( ± 3.5 % $\pm 3.5\%$ range uncertainty and ± 3 mm $\pm 3 \,{\rm mm}$ setup uncertainty along the main three axes).
The optimization method with L min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ resulted in an optimal LETd distribution with an average increase of LET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (and LET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) in the CTV-HD by 8.9 ± 1.5 keV / μ m $8.9\pm 1.5 \,{\rm keV}/{\umu }{\rm m}$ ( 27 % $27\%$ ) (and 6.9 ± 1.3 keV / μ m $6.9\pm 1.3 \,{\rm keV}/{\umu }{\rm m}$ ( 17 % $17\%$ )), without significant difference in the RBE-weighted dose. By allowing ± 5 % $\pm 5\%$ over- and under-dosage in the target, the LET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (and LET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) can be increased by 11.3 ± 1.2 keV / μ m $11.3\pm 1.2 \,{\rm keV}/{\umu }{\rm m}$ ( 34 % $34\%$ ) (and 11.7 ± 3.4 keV / μ m $11.7\pm 3.4 \,{\rm keV}/{\umu }{\rm m}$ ( 29 % $29\%$ )), using the optimization parameters L min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ . The pass rate for the OAR goals in the LETd optimized plans was in the same level as the reference plans. LETd optimization lead to less robust plans compared to reference plans.
Compared to conventionally optimized treatment plans, the LETd in the target was increased while maintaining the RBE-weighted dose using TPS LETd optimization functionalities. Regularly assessing RBE-weighted dose robustness and acquiring more in-room images remain crucial and inevitable aspects during treatment.
Schafasand M
,Resch AF
,Nachankar A
,Góra J
,Martino G
,Traneus E
,Glimelius L
,Georg D
,Fossati P
,Carlino A
,Stock M
... -
《-》