Soil Bacterial Community Response and Nitrogen Cycling Variations Associated with Subalpine Meadow Degradation on the Loess Plateau, China.

来自 PUBMED

作者:

Luo ZLiu JJia TChai BWu T

展开

摘要:

Grassland degradation is an ecological problem worldwide. This study aimed to reveal the patterns of the variations in bacterial diversity and community structure and in nitrogen cycling functional genes along a subalpine meadow degradation gradient on the Loess Plateau, China. Meadow degradation had a significant effect on the beta diversity of soil bacterial communities (P < 0.05) but not on the alpha diversity (P > 0.05). Nonmetric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM) indicated that the compositions of bacterial and plant communities changed remarkably with increasing meadow degradation (all P < 0.05). The beta diversities of the plant and soil bacterial communities were significantly correlated (P < 0.05), while their alpha diversities were weakly correlated (P > 0.05) along the meadow degradation gradient. Redundancy analysis (RDA) showed that the structure of the bacterial community was strongly correlated with total nitrogen (TN), nitrate nitrogen (NO3--N), plant Shannon diversity, plant coverage, and soil bulk density (all P < 0.05). Moreover, the abundances of N fixation and denitrification genes of the bacterial community decreased along the degradation gradient, but the abundance of nitrification genes increased along the gradient. The structure of the set of N cycling genes present at each site was more sensitive to subalpine meadow degradation than the structure of the total bacterial community. Our findings revealed compositional shifts in the plant and bacterial communities and in the abundances of key N cycling genes as well as the potential drivers of these shifts under different degrees of subalpine meadow degradation.IMPORTANCE Soil microbes play a crucial role in the biogeochemical cycles of grassland ecosystems, yet information on how their community structure and functional characteristics change with subalpine meadow degradation is scarce. In this study, we evaluated the changes in bacterial community structure and nitrogen functional genes in degraded meadow soils. Meadow degradation had a significant effect on bacterial community composition. Soil total nitrogen was the best predictor of bacterial community structure. The beta diversities of the plant and soil bacterial communities were significantly correlated, while their alpha diversities were only weakly correlated. Meadow degradation decreased the potential for nitrogen fixation and denitrification but increased the potential for nitrification. These results have implications for the restoration and reconstruction of subalpine meadow ecosystem on the Loess Plateau.

收起

展开

DOI:

10.1128/AEM.00180-20

被引量:

3

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(864)

参考文献(47)

引证文献(3)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读