PI3K/Akt pathway contributes to neuroprotective effect of Tongxinluo against focal cerebral ischemia and reperfusion injury in rats.
Tongxinluo (TXL), a compound prescription, is formulated according to the collateral disease doctrine of traditional Chinese medicine, and is widely used for the treatment of cardio-cerebrovascular diseases in China.
We aimed to investigate the neuroprotective effect of TXL on focal cerebral ischemia and reperfusion injury in rats by attenuating its brain damage and neuronal apoptosis, and to assess the potential role of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in this protection.
Adult Male Sprague-Dawley rats (n=120) were randomly divided into 5 groups: sham, cerebral ischemia and reperfusion (I/R), cerebral ischemia and reperfusion plus TXL (1.6g/kg/day) (TXL1.6), TXL1.6 plus LY294002 and dimethyl sulfoxide (DMSO) (TXL1.6+LY294002), TXL1.6 plus DMSO (TXL1.6+vehicle). Prior to the grouping, TXL1.6 was selected to be the optimal dose of TXL by evaluating the neurological deficits score of five group rats (Sham, I/R, TXL0.4, TXL0.8 and TXL1.6, n=30) at 0, 1, 3, 5, and 7 days after reperfusion. Rats, being subjected to middle cerebral artery occlusion (MCAO) for 90min followed by 24h reperfusion, were the cerebral ischemia/reperfusion models. At 24h after reperfusion, cerebral infarct area was measured via tetrazolium staining and neuronal damage was showed by Nissl staining. The double staining of Terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphosphate nick end labeling (TUNEL) staining and immunofluorescence labeling with NeuN, was performed to evaluate neuronal apoptosis. Proteins involved in PI3K/Akt pathway were detected by Western blot.
The results showed that TXL markedly improved neurological function, reduced cerebral infarct area, decreased neuronal damage, and significantly attenuated neuronal apoptosis, while these effects were eliminated by inhibition of PI3K/Akt with LY294002. We also found that TXL up-regulated the expression levels of p-PDK1, p-Akt, p-c-Raf, p-BAD and down-regulated Cleaved caspase 3 expression notably, which were partially reversed by LY294002. Additionally, the increment of p-PTEN level on which LY294002 had little effect was also detected in response to TXL treatment.
These findings demonstrated that TXL provided neuroprotection against cerebral ischemia/reperfusion injury and neuronal apoptosis, and this effect was mediated partly by activation of the PI3K/Akt pathway.
Yu ZH
,Cai M
,Xiang J
,Zhang ZN
,Zhang JS
,Song XL
,Zhang W
,Bao J
,Li WW
,Cai DF
... -
《-》
Trametenolic acid B protects against cerebral ischemia and reperfusion injury through modulation of microRNA-10a and PI3K/Akt/mTOR signaling pathways.
Trametenolic acid B (TAB) was a lanostane-type triterpenoid isolated from the trametes lactinea (Berk.) Pat. We have previously reported that extract from trametes lactinea (Berk.) Pat and TAB could efficiently improve learning and memory ability of the cerebral ischemia injury rats and suppress mitochondrial-mediated apoptosis in hydrogen peroxide damaged SH-SY5Y cells. However, the potential mechanisms have not been fully understood yet. The current study was to further investigate the protective effect of TAB on oxygen glucose deprivation/reoxygenation (OGD/R)-damaged SH-SY5Y cells and cerebral ischemia/reperfusion (I/R) injury rats, as well as its mechanisms involved. Cell experiments demonstrated that TAB (10, 20 and 40 μg/mL) protected OGD/R-induced SH-SY5Y cell injury by promoting cell proliferation and suppressing LDH leakage; Meanwhile, the results in vivo showed that TAB (20, 40 and 80 mg/kg) might significantly ameliorate the neurological deficit score, cerebral edema, neuronal cell loss and apoptosis, suppress cerebral infarction volume of the cerebral I/R injury rats. Further studies in vitro and in vivo indicated TAB could efficiently reduce OGD/R-damaged SH-SY5Y cell and cerebral I/R rat serum ROS, LDH and MDA levels, elevate SOD, GSH-Px and CAT activities, downregulate miR-10a mRNA and Bax, cytochrome C, cleaved-caspase-3 and cleaved-caspase-9 protein expressions, upregulate p-PIK3CA, p-Akt, p-mTOR, Bcl-2, pro-caspase-9 and pro-caspase-3 protein expressions and p-PIK3CA/PIK3CA, p-Akt/Akt, p-mTOR/mTOR ratios (P < 0.05 or P < 0.01, respectively). Our present study indicated that TAB possessed neuroprotective property against ODG/R and I/R injury by suppressing miR-10a expression, activating PI3K/Akt/mTOR signaling pathway, thereby reducing mitochondrial-mediated apoptosis, which provided a new insight for interpreting the underlying mechanisms of TAB' neuroprotective effect and a candidate agent to treat cerebral I/R injury.
Wang J
,Wang A
,He H
,She X
,He Y
,Li S
,Liu L
,Luo T
,Huang N
,Luo H
,Zou K
... -
《-》
Betulinic acid protects against cerebral ischemia/reperfusion injury by activating the PI3K/Akt signaling pathway.
Betulinic acid (BA), a naturally occurring pentacyclic lupane group triterpenoid, has been demonstrated to protect against ischemia/reperfusion-induced renal damage. However, the effects of BA on cerebral ischemia/reperfusion (I/R) injury remain unclear. Hence, this study was to investigate the effects of BA on oxygen and glucose deprivation/reperfusion (OGD/R) induced neuronal injury in rat hippocampal neurons. Our results showed that BA pretreatment greatly attenuated OGD/R-induced neuronal injury. BA also inhibited OGD/R-induced intracellular ROS production and MDA level in rat hippocampal neurons. Furthermore, the down-regulation of Bcl-2, up-regulation of Bax and the consequent activation of caspase-3 induced by OGD/R were reversed by BA pretreatment. Mechanistic studies demonstrated that BA pretreatment up-regulated the expression levels of p-PI3K and p-Akt in hippocampal neurons induced by OGD/R. Taken together, these data suggested that BA inhibits OGD/R-induced neuronal injury in rat hippocampal neurons through the activation of PI3K/Akt signaling pathway.
Jiao S
,Zhu H
,He P
,Teng J
... -
《-》