GPER mediates decreased chemosensitivity via regulation of ABCG2 expression and localization in tamoxifen-resistant breast cancer cells.
摘要:
Rescue chemotherapy is usually the preferred treatment for patients with advanced estrogen receptor-positive (ER+) breast cancer with endocrinotherapy resistance. However, these patients often simultaneously show a poor response to cytotoxic drugs, and thus the detailed mechanism of this resistance needs to be further investigated. Our previous research indicated that the G-protein-coupled estrogen receptor (GPER) is a novel mediator of the development of multidrug resistance, including resistance to both endocrinotherapy and chemotherapy, and ATP binding cassette subfamily G member 2 (ABCG2) has been identified as an engine that confers cancer cells with chemoresistance by expelling xenobiotics and chemotherapeutics. Here, we are the first to show that the expression levels of GPER and ABCG2 are markedly increased in tamoxifen-resistant ER + metastases compared to the corresponding primary tumors. A plasma membrane expression pattern of GPER and ABCG2 was observed in patients with metastases. Furthermore, both ER modulator tamoxifen, GPER-specific agonist G1 and pure ER antagonist ICI 182,780 significantly enhanced ABCG2 expression in tamoxifen-resistant breast cancer cells (MCF-7R) but not in tamoxifen-sensitive cells (MCF-7). The activated downstream GPER/EGFR/ERK and GPER/EGFR/AKT signaling pathways were responsible for regulating the expression and cell membrane localization of ABCG2, respectively, in MCF-7R cells. Interestingly, the above phenomenon could be alleviated by inhibitors of both the indicated signaling pathways and by knockdown of GPER in MCF-7R cells. More importantly, the tamoxifen-induced GPER/ABCG2 signaling axis was shown to play a pivotal role in the development of chemotherapy (doxorubicin) resistance both in vitro and in vivo. The clinical data further revealed that tamoxifen-resistant patients with high GPER/ABCG2 signaling activation had poor progression-free survival (PFS) when given rescue anthracycline chemotherapy. Therefore, our data provide novel insights into GPER-mediated chemoresistance and provide a rationale for the GPER/ABCG2 signaling axis being a promising target for reversing chemoresistance in patients with advanced ER + tamoxifen-resistant breast cancer.
收起
展开
DOI:
10.1016/j.mce.2020.110762
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(429)
参考文献(0)
引证文献(20)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无