Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.
Worldwide interest in artificial intelligence (AI) applications, including imaging, is high and growing rapidly, fueled by availability of large datasets ("big data"), substantial advances in computing power, and new deep-learning algorithms. Apart from developing new AI methods per se, there are many opportunities and challenges for the imaging community, including the development of a common nomenclature, better ways to share image data, and standards for validating AI program use across different imaging platforms and patient populations. AI surveillance programs may help radiologists prioritize work lists by identifying suspicious or positive cases for early review. AI programs can be used to extract "radiomic" information from images not discernible by visual inspection, potentially increasing the diagnostic and prognostic value derived from image datasets. Predictions have been made that suggest AI will put radiologists out of business. This issue has been overstated, and it is much more likely that radiologists will beneficially incorporate AI methods into their practices. Current limitations in availability of technical expertise and even computing power will be resolved over time and can also be addressed by remote access solutions. Success for AI in imaging will be measured by value created: increased diagnostic certainty, faster turnaround, better outcomes for patients, and better quality of work life for radiologists. AI offers a new and promising set of methods for analyzing image data. Radiologists will explore these new pathways and are likely to play a leading role in medical applications of AI.
Thrall JH
,Li X
,Li Q
,Cruz C
,Do S
,Dreyer K
,Brink J
... -
《-》
Stakeholders' perspectives on the future of artificial intelligence in radiology: a scoping review.
Artificial intelligence (AI) has the potential to impact clinical practice and healthcare delivery. AI is of particular significance in radiology due to its use in automatic analysis of image characteristics. This scoping review examines stakeholder perspectives on AI use in radiology, the benefits, risks, and challenges to its integration.
A search was conducted from 1960 to November 2019 in EMBASE, PubMed/MEDLINE, Web of Science, Cochrane Library, CINAHL, and grey literature. Publications reflecting stakeholder attitudes toward AI were included with no restrictions.
Commentaries (n = 32), surveys (n = 13), presentation abstracts (n = 8), narrative reviews (n = 8), and a social media study (n = 1) were included from 62 eligible publications. These represent the views of radiologists, surgeons, medical students, patients, computer scientists, and the general public. Seven themes were identified (predicted impact, potential replacement, trust in AI, knowledge of AI, education, economic considerations, and medicolegal implications). Stakeholders anticipate a significant impact on radiology, though replacement of radiologists is unlikely in the near future. Knowledge of AI is limited for non-computer scientists and further education is desired. Many expressed the need for collaboration between radiologists and AI specialists to successfully improve patient care.
Stakeholder views generally suggest that AI can improve the practice of radiology and consider the replacement of radiologists unlikely. Most stakeholders identified the need for education and training on AI, as well as collaborative efforts to improve AI implementation. Further research is needed to gain perspectives from non-Western countries, non-radiologist stakeholders, on economic considerations, and medicolegal implications.
Stakeholders generally expressed that AI alone cannot be used to replace radiologists. The scope of practice is expected to shift with AI use affecting areas from image interpretation to patient care. Patients and the general public do not know how to address potential errors made by AI systems while radiologists believe that they should be "in-the-loop" in terms of responsibility. Ethical accountability strategies must be developed across governance levels. Students, residents, and radiologists believe that there is a lack in AI education during medical school and residency. The radiology community should work with IT specialists to ensure that AI technology benefits their work and centres patients.
Yang L
,Ene IC
,Arabi Belaghi R
,Koff D
,Stein N
,Santaguida PL
... -
《-》