Kalanchoë PPC1 Is Essential for Crassulacean Acid Metabolism and the Regulation of Core Circadian Clock and Guard Cell Signaling Genes.
摘要:
Unlike C3 plants, Crassulacean acid metabolism (CAM) plants fix CO2 in the dark using phosphoenolpyruvate carboxylase (PPC; EC 4.1.1.31). PPC combines phosphoenolpyruvate with CO2 (as HCO3 -), forming oxaloacetate. The oxaloacetate is converted to malate, leading to malic acid accumulation in the vacuole, which peaks at dawn. During the light period, malate decarboxylation concentrates CO2 around Rubisco for secondary fixation. CAM mutants lacking PPC have not been described. Here, we employed RNA interference to silence the CAM isogene PPC1 in Kalanchoë laxiflora Line rPPC1-B lacked PPC1 transcripts, PPC activity, dark period CO2 fixation, and nocturnal malate accumulation. Light period stomatal closure was also perturbed, and the plants displayed reduced but detectable dark period stomatal conductance and arrhythmia of the CAM CO2 fixation circadian rhythm under constant light and temperature free-running conditions. By contrast, the rhythm of delayed fluorescence was enhanced in plants lacking PPC1 Furthermore, a subset of gene transcripts within the central circadian oscillator was upregulated and oscillated robustly in this line. The regulation of guard cell genes involved in controlling stomatal movements was also perturbed in rPPC1-B These findings provide direct evidence that the regulatory patterns of key guard cell signaling genes are linked with the characteristic inverse pattern of stomatal opening and closing during CAM.
收起
展开
DOI:
10.1105/tpc.19.00481
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(108)
参考文献(104)
引证文献(36)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无