Piper Nigrum extract improves OVA-induced nasal epithelial barrier dysfunction via activating Nrf2/HO-1 signaling.

来自 PUBMED

作者:

Bui TTFan YPiao CHNguyen TVShin DUJung SYHyeon ESong CHLee SYShin HSChai OH

展开

摘要:

Piper nigrum L. (Piperaceae) is commonly used as a spice and traditional medicine in many countries. It has been reported to have anti-oxidant, anti-bacterial, anti-tumor, anti-mutagenic, anti-diabetic, and anti-inflammatory properties. However, the protective role of P. nigrum on epithelial function of upper respiratory tract injury in an allergic rhinitis (AR) mouse model has been unclear. This study aims to investigate the effects of P. nigrum fruit extract (PNE) on the nasal epithelial barrier function of the upper respiratory tract in an ovalbumin (OVA)-induced AR model. AR mouse model was established by intraperitoneal injection with 200 µL saline containing 50 µg OVA adsorbed to 1 mg aluminum hydroxide, and intranasal challenge with 20 µL per nostril of 1 mg/ml OVA. Besides, mice were orally administrated once daily with PNE and dexamethasone (Dex) in 13 days. The nasal symptoms, inflammatory cells, OVA-specific immunoglobulins, cytokines, nasal histopathology, and immunohistochemistry were evaluated. The PNE oral administrations inhibited allergic responses via reduction of OVA-specific antibodies levels and mast cells histamine release, accordingly, the nasal symptoms in the early-phase reaction were also clearly ameliorated. In both nasal lavage fluid and nasal tissue, PNE suppressed the inflammatory cells accumulation, specifically with eosinophils. The intravenous Evans blue injection illustrated the epithelial permeability reduction of nasal mucosa layer in PNE-treated mice. Also; PNE treatments protected the epithelium integrity by preventing the epithelial shedding from nasal mucosa; as a result of enhancing the strong expression of the E-cadherin tight junction protein in cell-to-cell junctions, as well as inhibiting the degraded levels of zonula occludens-1 (ZO-1) and occludin into the nasal cavity. Additionally, PNE protected against nasal epithelial barrier dysfunction via enhancing the expression of Nrf2 activated form which led to increasing synthesis of the anti-inflammation enzyme HO-1. These obtained results suggest that PNE has a promising strategy for epithelial barrier stabilization in allergic rhinitis treatment.

收起

展开

DOI:

10.1016/j.cellimm.2019.104035

被引量:

14

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(229)

参考文献(0)

引证文献(14)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读