Identification of gene modules and hub genes in colon adenocarcinoma associated with pathological stage based on WGCNA analysis.

来自 PUBMED

作者:

Wang HLiu JLi JZang DWang XChen YGu TSu WSong N

展开

摘要:

Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality in the world, in which colon adenocarcinoma (COAD) is the most common histological subtype of CRC. In this study, our aim is to identify gene modules and representative candidate biomarkers for clinical prognosis of patients with COAD, and help to predict prognosis and reveal the mechanisms of cancer progression. Weighted gene co-expression network analysis (WGCNA) was performed to construct a co-expression network and identify gene modules correlated with TNM clinical staging of COAD patients. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed with the module gene. Protein-protein interaction (PPI) network and hub gene identification were explored with Cytoscape software. Finally, the hub gene mRNA level was validated in Oncomine database. Five gene modules, related with the pathological TNM stage, were constructed, and the gene module was enriched in cell proliferation, invasion and migration related GO terms and metabolic related KEGG pathways. A total of top 10 hub genes was identified, and in which six of the hub genes show a significant up-regulation in COAD as compared to normal tissue, including IVL, KRT16, KRT6C, KRT6A, KRT78 and SBSN. In conclusion, we identified five gene modules and six candidate biomarkers correlated with the TNM staging of COAD patients. These findings may help us to understand the tumor progression of COAD and provide prognostic biomarkers as well as therapeutic targets.

收起

展开

DOI:

10.1016/j.cancergen.2020.01.052

被引量:

21

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(742)

参考文献(0)

引证文献(21)

来源期刊

Cancer Genetics

影响因子:2.167

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读