High content screening identifies licoisoflavone A as a bioactive compound of Tongmaiyangxin Pills to restrain cardiomyocyte hypertrophy via activating Sirt3.

来自 PUBMED

作者:

Guo RLiu NLiu HZhang JZhang HWang YBaruscotti MZhao LWang Y

展开

摘要:

Cardiac hypertrophy is a prominent feature of heart remodeling, which may eventually lead to heart failure. Tongmaiyangxin (TMYX) pills are a clinically used botanical drug for treating multiple cardiovascular diseases including chronic heart failure. The aim of the current study was to identify the bioactive compounds in Tongmaiyangxin pills that attenuate cardiomyocytes hypertrophy, and to investigate the underlying mechanism of action. The anti-hypertrophy effect of TMYX was validated in isoproterenol-induced cardiac hypertrophy model in C57BL/6 mice. After TMYX treatment for 2 weeks, the heart ejection fraction and fractional shortening of the mice model was increased by approximately 20% and 15%, respectively, (p < 0.05). Besides, TMYX dose-dependently reduced the cross section area of cardiomyocytes in the angiotensin-II induced hypertrophy H9c2 model (p < 0.01). Combining high content screening and liquid chromatography mass spectrometry, four compounds with anti-cardiac hypertrophy effects were identified from TMYX, which includes emodin, licoisoflavone A, licoricone and glyasperin A. Licoisoflavone A is one of the compounds with most significant protective effect and we continued to investigate the mechanism. Primary cultures of neonatal rat cardiomyocytes were treated with a hypertrophic agonist phenylephrine (PE) in the presence or absence of licoisoflavone A. After 48 h of treatment, cells were harvested and mitochondrial acetylation was analyzed by western blotting and Image analysis. Interestingly, the results suggested that the anti-hypertrophic effects of licoisoflavone A depend on the activation of the deacetylase Sirt3 (p < 0.01). Finally, we showed that licoisoflavone A-treatment was able to decrease relative ANF and BNP levels in the hypertrophic cardiac cells (p < 0.01), but not in cells co-treated with Sirt3 inhibitors (3-TYP) (p > 0.05). TMYX exerts its anti-hypertrophy effect possibly through upregulating Sirt3 expression. Four compounds were identified from TMYX which may be responsible for the anti-hypertrophy effect. Among these compounds, licoisoflavone A was demonstrated to block the hypertrophic response of cardiomyocytes, which required its positive regulation on the expression of Sirt3. These results suggested that licoisoflavone A is a potential Sirt3 activator with therapeutic effect on cardiac hypertrophy.

收起

展开

DOI:

10.1016/j.phymed.2020.153171

被引量:

8

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(207)

参考文献(0)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读