Exploring why sodium lignosulfonate influenced enzymatic hydrolysis efficiency of cellulose from the perspective of substrate-enzyme adsorption.

来自 PUBMED

作者:

Zheng WLan TLi HYue GZhou H

展开

摘要:

Cellulase adsorbed on cellulose is productive and helpful to produce reducing sugars in enzymatic hydrolysis of lignocellulose; however, cellulase adsorbed on lignin is non-productive. Increasing productive adsorption of cellulase on cellulose would be beneficial in improving enzymatic hydrolysis. Adding lignin that was more hydrophilic in hydrolysis system could increase productive adsorption and promote hydrolysis. However, the effect mechanism is still worth exploring further. In this study, lignosulfonate (LS), a type of hydrophilic lignin, was used to study its effect on cellulosic hydrolysis. The effect of LS on the enzymatic hydrolysis of pure cellulose (Avicel) and lignocellulose [dilute acid (DA) treated sugarcane bagasse (SCB)] was investigated by analyzing enzymatic hydrolysis efficiency, productive and non-productive cellulase adsorptions, zeta potential and particle size distribution of substrates. The result showed that after adding LS, the productive cellulase adsorption on Avicel reduced. Adding LS to Avicel suspension could form the Avicel-LS complexes. The particles were charged more negatively and the average particle size was smaller than Avicel before adding LS. In addition, adding LS to cellulase solution formed the LS-cellulase complexes. For DA-SCB, adding LS decreased the non-productive cellulase adsorption on DA-SCB from 3.92 to 2.99 mg/g lignin and increased the productive adsorption of cellulase on DA-SCB from 2.00 to 3.44 mg/g cellulose. Besides, the addition of LS promoted the formation of LS-lignin complexes and LS-cellulase complexes, and the complexes had more negative charges and smaller average sizes than DA-SCB lignin and cellulase particles before adding LS. In this study, LS inhibited Avicel's hydrolysis, but enhanced DA-SCB's hydrolysis. This stemmed from the fact that LS could bind cellulase and Avicel, and occupied the binding sites of cellulase and Avicel. Thus, a decreased productive adsorption of cellulase on Avicel arose. Regarding DA-SCB, adding LS, which enhanced hydrolysis efficiency of DA-SCB, increased the electrostatic repulsion between DA-SCB lignin and cellulase, and therefore, decreased non-productive adsorption of cellulase on DA-SCB lignin and enhanced productive adsorption of cellulase on DA-SCB cellulose.

收起

展开

DOI:

10.1186/s13068-020-1659-5

被引量:

7

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(167)

参考文献(28)

引证文献(7)

来源期刊

Biotechnology for Biofuels

影响因子:7.662

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读