Astragalus propinquus Schischkin and Panax notoginseng (A&P) compound relieved cisplatin-induced acute kidney injury through inhibiting the mincle maintained macrophage inflammation.
摘要:
Acute kidney injury (AKI) is a common disease in hospitalized patients, especially in critically ill patients. It is characterised with high morbidity and mortality, and is also an important cause of chronic kidney disease and chronic renal failure. Astragalus propinquus Schischkin and Panax notoginseng (A&P) compound, a famous traditional Chinese medicine, consists of Astragalus propinquus Schischkin, Panax notoginseng, Angelica sinensis, Achyranthes bidentata, and Ecklonia kurome, has been widely used for the treatment of various kidney diseases in the southwest of China. However, the effects of A&P on treatment of AKI and its underlying mechanism are needed to be uncovered. Recent researches reported that Mincle (Macrophage-inducible C-type lectin) plays a key role in renal injury of AKI by regulating the expression and secretion of inflammatory cytokines on macrophage through modulating NF-κB signaling pathway. Here, we aimed to investigate the renoprotective effect of A&P on AKI and whether by inhibiting Mincle. We established a lipopolysaccharide (LPS)-induced Bone Marrow-Derived Macrophage (BMDM) inflammatory cell model and a cisplatin-induced mouse AKI model in vitro and in vivo. Renal histopathology staining was performed to observe kidney morphology. The expression and secretion of inflammatory cytokines were detected by real-time PCR and Enzyme-linked immunosorbent assay. Western blotting was used to detect the protein levels and Flow cytometry performed to detect polarization of macrophage. The results showed that A&P significantly reduced the mRNA expression of IL-1β, IL-6, TNFα and MCP-1 in LPS-stimulated BMDM cells, and secretion of IL-1β and IL-6 in supernatant. The same results were found in Cisplatin-induced AKI kidney and serum after treatment with A&P. The data also showed that A&P strongly reduced the mRNA and protein levels of Mincle in vitro and vivo, and also inhibited the activation of Syk and NF-κB. Notably, A&P down-regulated the M1 macrophage marker iNOS, which may relate to the inhibition of Mincle. Interestingly, both overexpression of Mincle by transfection of pcDNA3.1-Mincle plasmid and administration of TDB (a ligand of Mincle) can significantly abolished the A&P-inhibited inflammation in BMDM, suggesting Mincle pathway play a key role in macrophage inflammation in AKI. Our findings indicated that A&P protected kidney from inhibiting inflammation through down-regulating of Mincle pathway in macrophage in AKI. It provides a potential medicine compound for the treatment of AKI.
收起
展开
DOI:
10.1016/j.jep.2020.112637
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(569)
参考文献(0)
引证文献(16)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无