-
3'-(4-(Benzyloxy)phenyl)-1'-phenyl-5-(heteroaryl/aryl)-3,4-dihydro-1'H,2H-[3,4'-bipyrazole]-2-carboxamides as EGFR kinase inhibitors: Synthesis, anticancer evaluation, and molecular docking studies.
Pyrazoline-linked carboxamide derivatives were designed, synthesized, and evaluated for potential epidermal growth factor receptor (EGFR) kinase inhibition, anticancer activity, and apoptotic and cardiomyopathy toxicity. Compounds 6m and 6n inhibit EGFR kinase at a concentration of 6.5 ± 2.91 and 3.65 ± 0.54 µM, respectively. Some of these compounds showed effects on proliferation, which were also then evaluated against four different human cancer cell lines, that is, MCF-7 (breast cancer), A549 (non-small-cell lung tumor), HCT-116 (colon cancer), and SiHa cells (cancerous tissues of the cervix uteri). The results showed that certain synthetic compounds showed significant inhibitor activity; compounds 6m and 6n were more cytotoxic than doxorubicin against A549 cancer cells, with IC50 values of 10.3 ± 1.07 and 4.6 ± 0.57 µM, respectively. Additionally, compounds 6m and 6n induced apoptosis in A549 cancer cells, as evidenced by 4',6-diamidino-2-phenylindole (DAPI) staining and phase-contrast microscopy. Potency to induce apoptosis by compound 6n was further confirmed by fluorescence-activated cell sorting using Annexin V-FITC and propidium iodide labeling. Compound 6n showed normal cardiomyocytes with no marked sign of pyknotic nuclei in cardiomyopathy and also normal histological appearance of the renal cortex when compared with that of control. Results of molecular docking studies suggested that compounds 6m and 6n can bind to the hinge region of the adenosine triphosphate-binding site of EGFR kinase, like the standard drug erlotinib. Therefore, the present study suggests that compounds 6m and 6n have potent in vitro antitumor activities against the human non-small-cell lung tumor cell line A549, which can be further explored in other cancer cell lines and in animal studies.
Nawaz F
,Alam O
,Perwez A
,Rizvi MA
,Naim MJ
,Siddiqui N
,Pottoo FH
,Jha M
... -
《-》
-
Design, Synthesis, Molecular Docking, and Anticancer Evaluation of Pyrazole Linked Pyrazoline Derivatives with Carbothioamide Tail as EGFR Kinase Inhibitors.
The Epidermal Growth Factor Receptor (known as EGFR) induces cell differentiation and proliferation upon activation through the binding of its ligands. Since EGFR is thought to be involved in the development of cancer, the identification of new target inhibitors is the most viable approach, which recently gained momentum as a potential anticancer therapy.
To assess various pyrazole linked pyrazoline derivatives with carbothioamide for EGFR kinase inhibitory as well as anti-proliferative activity against human cancer cell lines viz. A549 (non-small cell lung tumor), MCF-7 (breast cancer cell line), SiHa (cancerous tissues of the cervix uteri), and HCT-116 (colon cancer cell line).
In vitro EGFR kinase assay, in vitro MTT assay, Lactate dehydrogenase release, nuclear staining (DAPI), and flow cytometry cell analysis.
Compounds 6h and 6j inhibited EGFR kinase at concentrations of 1.66μM and 1.9μM, respectively. Furthermore, compounds 6h and 6j showed the most potent anti-proliferative results against the A549 KRAS mutation cell line (IC50 = 9.3 & 10.2μM). Through DAPI staining and phase contrast microscopy, it was established that compounds 6h and 6j also induced apoptotic activity in A549 cells. This activity was further confirmed by FACS using Annexin-V-FITC and Propidium Iodide (PI) labeling. Molecular docking studies performed on 6h and 6j suggested that the compounds can bind to the hinge region of ATP binding site of EGFR tyrosine kinase in a similar pose as that of the standard drug gefitinib.
The potential anticancer activity of compounds 6h and 6j was confirmed and need further exploration in cancer cell lines of different tissue origin and signaling pathways, as well as in animal models of cancer development.
Nawaz F
,Alam O
,Perwez A
,Rizvi MA
,Naim MJ
,Siddiqui N
,Firdaus JU
,Rahman S
,Jha M
,Sheikh AA
... -
《-》
-
Design, Synthesis, biological Evaluation, and molecular docking studies of novel Pyrazolo[3,4-d]Pyrimidine derivative scaffolds as potent EGFR inhibitors and cell apoptosis inducers.
A series of novel hybrid pyrazolo[3,4-d]pyramidine derivatives was designed and chemically synthesized in useful yields. The synthesized compounds were structurally characterized by the usual techniques. All the new synthesized compounds were biologically screened in vitro for their antiproliferative activities against a panel of four cancer cell lines, namely HepG-2, MCF-7, HCT-116, and Hela. The results of cytotoxic evaluation indicated that compound 14d was appeared to be the most prominent broad-spectrum cytotoxic activity and significantly more potent than sorafenib with IC50 values of 4.28, 5.18, 3.97, and 9.85 µM against four cell lines (HePG2, Hela, HCT-116 and MCF-7). In addition, compound 15 was displayed promising antiproliferative effect against all tested cell lines with IC50 value less than 11 µM compared with sorafenib as a control drug. Besides, structurally pharmacophoric features indicated that pyrazolo[3,4-d]pyrimidine scaffold having an amide linker and substituted with phenyl moiety at the 5-position was more potent than those possessing azomethine methyl, azomethine proton and carbomethene linkers, which lead to significant decrease in antiproliferative activity. The most potent compounds were further selected and evaluated for their activities against epidermal growth factor receptor (EGFR) kinase inhibitors according to homogenous time resolved fluorescence (HTRF) assay. The most potent compound 14d exhibited the most promising inhibitory activity against EGFRWT with IC50 value of 56.02 ± 1.38 µM compared with gefitinib as control drug with IC50 value of 41.79 ± 1.07 µM. Moreover, the inhibition of cell cycle progression and induction of apoptosis in the A549 cell line at G2/M and pre-G1 phases of cell cycle might contribute to cancer treatment that evaluated by Annexin V-FITC/PI double staining detection method. Finally, molecular docking studies were conducted to investigate that probable binding conformations of these anticancer agents and ADME properties were calculated to predict pharmacokinetics and toxic properties of the target compounds.
Sherbiny FF
,Bayoumi AH
,El-Morsy AM
,Sobhy M
,Hagras M
... -
《-》
-
Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors.
Epidermal growth factor receptor (EGFR, also known as HER1) and HER2, prominent members of receptor tyrosine kinase (RTK) superfamily, have been reported as diagnostic or prognostic markers in tumor progression. Based on the importance of molecular hybridization of pyrazoline and thiazole scaffolds in the discovery of potent anticancer agents, new thiazolyl-pyrazoline derivatives (3a-v) were synthesized and screened for their cytotoxic effects on A549 human lung adenocarcinoma, MCF-7 human breast adenocarcinoma and A375 human melanoma cell lines. 1-(4-(4-Fluorophenyl)thiazol-2-yl)-3-(4-morpholinophenyl)-5-(4-chlorophenyl)-2-pyrazoline (3c),1-(4-(4-cyanophenyl)thiazol-2-yl)-3-(4-morpholinophenyl)-5-(4-chlorophenyl)-2-pyrazoline (3f) and 1-(4-(4-cyanophenyl)thiazol-2-yl)-3-(4-piperidinophenyl)-5-(4-chlorophenyl)-2-pyrazoline (3q) were found as the most potent anticancer agents against A549 and MCF-7 cell lines compared to erlotinib. Compound 3q also showed moderate cytotoxic activity against A375 cell line. Moreover, these compounds exert a cancer cell-selective action against Jurkat cell line posing no toxicity on peripheral blood mononuclear cells (PBMCs). In order to enlighten the mechanism of action underlying anticancer activity, compounds 3c, 3f and 3q were investigated for their apoptotic effects on A549 and MCF-7 cell lines and inhibitory potencies against eight different RTKs including EGFR and HER2 compared to erlotinib. The results indicated that compounds 3f and 3q induced apoptosis in both cell lines and showed significant EGFR inhibitory activity with IC50 values of 4.34 ± 0.66 μM and 4.71 ± 0.84 μM, respectively when compared with erlotinib (IC50 = 0.05 ± 0.01 μM). Besides, compound 3f also inhibited HER2 notably with an IC50 value of 2.28 ± 0.53 μM making it a dual EGFR and HER2 inhibitor. Molecular docking studies, which were conducted to support the in vitro assays, pointed out that compound 3f showed high affinity into the ATP binding sites of EGFR and HER2.
Sever B
,Altıntop MD
,Radwan MO
,Özdemir A
,Otsuka M
,Fujita M
,Ciftci HI
... -
《-》
-
Synthesis, EGFR Inhibition and Anti-cancer Activity of New 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine Derivatives.
as EGFR inhibitors, mammalian target of rapamycin (mTOR) inhibitors, Src or dual Src/Abl inhibitors, glycogen synthase kinase-3b (GSK-3b) inhibitors or cyclin dependent kinase (CDK) inhibitors.
A new series of hybrid pyrazolo[3,4-d]pyrimidine scaffold with a heteroaryl moiety as pyrazole, oxadiazole, triazole or phthalimide moiety (14a-f, 16, 17, 19, 20) was synthesized and biologically evaluated for the cytotoxicity against human liver cancer cell line (HEPG-2), human breast cancer cell line (MCF-7) and human colon cancer cell line (HCT-116). Results and Method: While the pyrazolo hybrid compounds (14a-f) showed good activity against HEPG-2, MCF- 7 and HCT-116 cell lines (IC50 = 3.65 - 39.98, 1.45 - 54.19 and 2.00 - 50.6 µM respectively) in comparison with doxorubicin (IC50 = 5.66, 2.60 and 8.48 µM respectively), the triazolo derivatives (17, 19) showed considerable potency (IC50 = 22.20 - 54.61, 14.98 - 88.78, and 10.79 - 53.40 µM respectively), the oxadiazolo hybrid compound (16, IC50 = 149.91, 115.89 and 110.07 µM respectively) and phthalimido hybrid compound (20, IC50 = 96.02, 131.19 and 120.36 µM respectively) showed low potency. The pyrazolo derivative (14d, IC50 = 3.65, 1.45 and 2.00 µM) was the most potent among all compounds against HEPG-2, MCF-7 and HCT-116 cell lines respectively. Also, the hybrid pyrazolo[3,4-d]pyrimidine derivatives were evaluated for their inhibitory activity to epidermal growth factor receptor tyrosine kinase (EGFR-TK) and they showed a good inhibitory activity (IC50 = 8.27 - 19.03 µM). With the exception of the pyrazolo derivative (14c, IC50 = 18.82 µM), the inhibitory activity against EGFR-TK was consistent with the in vitro cytotoxic activity against HEPG-2, MCF-7 and HCT-116 cell lines.
The newly synthesized compounds showed good activity against HEPG-2, MCF-7 and HCT-116 cell lines in comparison with the reference drug doxorubicin.
Bakr RB
,Mehany ABM
,Abdellatif KRA
《-》